Аксиомы теории множеств

 

Сейчас у нас имеются все средства, чтобы сформулировать систему аксиом теории множеств ZFC, в рамках которой можно изложить все общепринятые в современной математике способы рассуждений и не проходит ни один из известных теоретико-множественных парадоксов. Эта система позволяет строить все математические объекты исходя из пустого множества. Представим систему аксиом, Цермело — Френкеля (ZF).

1. Аксиома существования пустого множества: Существует пустое множество Æ;

2. Аксиома существования пары: Если существуют множества а и b, то существует множество { a, b };

3. Аксиома суммы: Если существует множество X, то существует множество ÈX={a | a Î b для некоторого b Î X};

4. Аксиома бесконечности: Существует множество w = { 0, 1,…,n,… }, где 0 = Æ, n + 1 = n È { n };

5. Аксиома множества всех подмножеств: Если существует множество А, то существует множество:

 

Р(А) = { B | B Í A};


6. Аксиома замены: Если P(x, у) — некоторое условие на множества x, у, такое, что для любого множества x существует не более одного множества у, удовлетворяющего Р(х, у), то для любого множества а существует множество {b | P(c,b) для некоторого с Î а};

7. Аксиома экстенсиональности:

Два множества, имеющие одинаковые элементы, равны, любое множество определяется своими элементами:

 

;

 

8. Аксиома регулярности:

Всякое непустое множество x имеет элемент а Î х, для которого

 

a Ç x = Æ.

 

Из аксиомы регулярности следует, что каждое множество получается на некотором шаге "регулярного процесса" образования множества всех подмножеств, начинающегося с Æ и подобного построению натуральных чисел из пустого множества по аксиоме бесконечности. Это означает, что любой элемент любого множества является множеством, сконструированным из пустого множества.

Покажем, как аксиоматика ZF позволяет определять теоретико-множественные операции.

1. Определим множество A È В, исходя из множеств А к В. По аксиоме существования пары образуется множество {А, В}. С помощью аксиомы суммы получаем множество È{A, B}, которое по определению совпадает с множеством A È B.

2. Пересечение А Ç В множеств А и В определяется по аксиоме замены с помощью следующего свойства Р(х, у): х = у и х Î А. Имеем множество {b | P(c,b) и с Î В} = {b | с = b и с Î А и с ÎВ} = {c | с Î А и с ÎВ}.

3. Покажем, что из аксиом 5 и 6 следует существование множества А2 = {(a, b) | a, b Î А} для любого множества А. Так как (a, b) = {{a}, {a, b}}, то А2 Í P(Р(А)). Пусть свойство Р(х, у) означает, что существуют такие a, b Î А, что x = {{а}, {а, b}} и y = х. Тогда множество А2 равно {b | P(c,b), c Î Р(Р(А))} и по аксиоме 6 оно существует.

Система аксиом ZFC образуется из ZF добавлением одной из следующих двух эквивалентных аксиом, которые, с одной стороны, являются наименее "очевидными", а с другой — наиболее содержательными,

1. Аксиома выбора.

Для любого непустого множества А существует такое отображение j: Р(А) \ {Æ} ®A, что j (Х) Î X |для всех X Í А, X ¹ Æ.

2. Принцип полного упорядочения. Для любого непустого множества А существует бинарное отношение £ на А, для которого {A, £} вполне упорядоченное множество.

В системе ZFC справедлив принцип трансфинитной индукции, являющийся обобщением принципа полной индукции: если {A, £} - вполне упорядоченное множество, Р(х) — некоторое свойство, то справедливость свойства Р(х) на всех элементах х Î А следует из того, что для любого z Î А выполнимость свойства Р на элементах у, где у < z, влечет выполнимость P(z):





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: