Змішаний конгруентний метод

Даний метод відрізняється від попереднього додаванням до залишку від ділення постійного числа :

2.

Наприклад,

тоді , де 4 – з попереднього прикладу.

Типи перевірки генераторів рівномірно розподілених псевдовипадкових чисел.

Розрізняють три типи перевірки: на періодичність, на випадковість, а рівномірність.

1) Перевірка на періодичність вимагає обов’язкового визначення довжини періоду і проміжну періодичність псевдовипадкових послідовностей.

2) При перевірці на випадковість рекомендується використовувати сукупність тестів перевірки:

1. чистої

2. нар.

3. комбінацій

4. серій

5. кореляції

3) При перевірці на рівномірність можна використовувати тест перевірки чистої.

 

Генерування псевдовипадкових рівномірно розподілених в інтервалі (0,1) чисел.

Для отримання випадкових рівномірно розподілених на інтервалі (0,1) чисел використовують:

1) таблиці випадкових чисел;

2) фізичні датчики випадкових чисел;

3) арифметичні методи псевдовипадкових чисел.

Найчастіше в даний час використовуються арифметичні методи отримання псевдовипадкових чисел за допомогою ЕОМ.

Одним з перших предметних методів отримання псевдовипадкових чисел був метод Неймана (метод середини квадратів). Є модифікаційний метод Неймана і метод множинної подібності.

 

Рівномірний розподіл

Для імітації рівномірного розподілу на інтервалі від а до в використовується обернене перетворення функції густини (щільності) (метод зворотної функції):

4.

5.  - функція щільності для рівномірного розподілу.

6. , де

Якщо позначити –rj – RN, то отримаємо з 6:

6*. , де

Фортран-програму можна викликати оператором

CALL UNIFRM (A,B,X)

Значення А і В задаються на вході

SUBROUTINE UNIFRM (A,B,X)

1 CALL RANDUM (IX, IY, RN)

2 X = A+(B-A)*RN

3 RETURN

4 END

 

Методи генерування псевдовипадкових чисел, розподілених по заданому закону.

Найбільш поширеним є методи:

1) зворотної функції;

2) табличний;

3) метод, що базується на функціональних особливостях генерованих розподілів.

1) Метод полягає в використанні наступної теореми:

Якщо випадкова величина має густину розподілу f(z), розподіл випадкової величини

3.  є рівномірним в інтервалі 0…1 (а – нижня границя діапазону зміни випадкової величини z).

Для того щоб отримати випадкове число zj з щільністю (густиною) f(z), необхідно знайти рішення рівняння

4.

Наприклад, для експоненційного закону

 

4*.  - функція щільності для експоненційного закону.

Використовуємо формулу (див. ст. 53, рівн. 3

від лівої до правої частини візьмемо ln.

Звідси -

5.

Переваги методу зворотньої функції: точність методу, не потрібне складання і збереження в пам’яті таблиць.

Недоліки вирахувати інтеграл від функції густини аналітично; використання числових методів розрахунку інтегралів приводить до помилок і великих затрат машинного часу.

2) Табличний метод. Метод застосовується в транспеторі мови GPSS.

Переваги табличного методу: дозволяє генерувати випадкові послідовності з любим заданим законом. Використовується метод лінійної інтерголації. Будь-яку задану точність можна отримати при збільшенні кількості інтервалів; необхідне тільки одне випадкове рівномірно розподілене число і виконання нескладних операцій, що займають мало часу.

3) Метод використовується, як правило, в тих випадках, коли аналітично не вдається вирахувати інтеграл від функції густини.

 

 




double arrow
Сейчас читают про: