Направление вогнутости кривой

Пусть две точки M1 и M2 имеют одну и ту же абсциссу. Если при этом ордината точки M1 более (менее) ординаты точки M2, то говорят, что точка M1 лежит выше (ниже) точки M2. Говорят также, что в промежутке а<х<b линия y = f(x) лежит выше (ниже) линии у=φ(х), если в этом промежутке каждая точка первой линии лежит в ыше (ниже) соответствующей ей точки второй линии, т. е. если

f(x)> φ(x) [или f(x)< φ(x) ].

Определение. В промежутке а < х < b криваяграфик дифференцируемой функции y=f(x) — называется вогнутой вверх (вниз), если она лежит выше (ниже) касательной в любой точке данного промежутка.

Кривая, изображенная на черт., является вогнутой, вверх в промежутке а < х < b и вогнутой вниз в промежутке b < х < с.

. В более подробных курсах анализа доказывается, что если производная f '(х) — возрастающая (убывающая) функция в промежутке а < х < b, то кривая y=f(х) является вогнутой вверх (вниз) в этом промежутке.

Чтобы уяснить эту теорему, наметим на оси Ох (черт.)

произвольно ряд точек и проведем через каждую из них

прямую так, чтоб и угловом коэффициент прямой возрастал с возрастанием абсциссы намеченных точек; затем, приняв эти прямые за касательные к неко­торой кривой линии [ tgφ = f '(x) ], построим эту кривую линию. Мы видим, что она может лежать только выше каждой из проведенных касательных.

. Достаточный признак вогнутости вверх (вниз). Если в промежутке а<х<b вторая производная f ''(x) положительна (отрицательна), за исключением отдельных точек, в которых она равна нулю, то кривая у=f(х) в этом промежутке вогнута вверх (вниз).

Действительно, если в промежутке а<х<b вторая производная f "(x), например, положительна, за исключением отдельных точек, в которых она равна нулю, то первая производная f '(х) —возрастающая функция, а кривая y = f(x), согласно предыдущему, является вогнутой вверх.

Если f "(x) = 0 не в отдельных точках, а в некотором промежутке, то в этом промежутке f '(x) — постоянная функция, a f(x) — линейная функция, график ее — прямая линия, и говорить о вогнутости не имеет смысла.

 

 

Точки перегиба

. Определение, Если в некоторой окрестности точки х = с криваяграфик дифференцируемой функции y = f(x)имеет слева и справа от точки х = с вогнутости противоположного направления, то значение х = с называется точкой перегиба.

Точку М кривой (черт.), абсцисса которой х = с, называют также точкой перегиба, она отделяет дугу кривой, вогнутую вверх, от дуги, вогнутой вниз. Точкой перегиба может быть только та точка, в которой к кривой имеется касательная. В окрестности точки перегиба кривая лежит по обе стороны от касательной: выше и ниже ее. Заметим, что она расположена также по обе стороны от нормали. Но такая точка, как Р (черт.), в которой единственной касательной не имеется, точкой перегиба не является.

. Так как слева и справа от точки перегиба х = с вогнутости кривой y=f(x) разного направления, то вторая производная f "(x) имеет слева и справа от точки х = с разные знаки или равна нулю. Полагая вторую производную непрерывной и окрестности точки х = с, заключаем, что в точке перегиба она равна нулю, т. е.

f(c) = 0.

. Отсюда следует правило нахождения точек перегиба:

1) найти вторую производную данной функции;

2) приравнять ее нулю и решить полученное уравнение (или найти те значения х, при которых производная теряет числовой смысл), из полученных корней отобрать действительные и расположить их no величине от меньшего к большему;

3) определить знак второй производной в каждом, из промежутков, отграниченных полученными корнями;

4) если при этом в двух промежутках, отграниченных исследуемой точкой, знаки второй производной окажутся разными, то имеется точка перегиба, если одинаковыми, то точки перегиба нет.

4°. Примеры. Найти точки перегиба и определить проме­жутки вогнутости вверх и вниз кривых:

1) у = lп х.

Р е ш е н и е. Находим вторую производную:

y '=1/x;  y ''= -1/x2.

При всяком значении x = (0 < х <+∞ ) у" отрицательна. Значит, логарифмика точек перегиба не имеет и обращена вогнутостью вниз.

2) у = sin x.

Решение. Находим вторую производную:

y' =cos x,    y'' = -sin x.

Полагая - sin x = 0, находим, что x = kπ, где k - целое число.

Если 0 < x< π, то sin x положителен и y '' отрицательна, если же π < x< 2π, то sin x отрицателен и y'' положительна и т. д. Значит, синусоида имеет точки перегиба 0, π, 2π,...

В первом промежутке 0 < x< π она обращена вогнутостью вниз, во втором    - вогнутостью вверх и т. д.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: