Елементарні функції та їх класифікація

Показникова функція (рис.5.3).

Функція означена в інтервалі і неперервна в кожній точці цього інтервалу. При функція зростає; при - спадає. Областю зміни показникової функції є інтервал .

Логарифмічна функція (рис.5.4).

Функція означена в інтервалі і неперервна в кожній точці цього інтервалу. При функція зростає; при - спадає.

Область зміни логарифмічної функції складає множина всіх дійсних чисел.

Степенева функція (рис.5.5, 5.6).

Якщо відносно відомо лише, що це деяке дійсне число, то можна говорити про значення тільки для . Тому в загальному випадку областю означення степеневої функції вважають інтервал . Якщо то означена і в точці , де приймає значення . При зростанні степенева функція зростає, якщо і спадає, якщо . Значення у степеневої функції заповнюють інтервал . Якщо число - ціле або дробове з непарним знаменником, то степенева функція при означена для всіх , а при - для всіх , крім .

Тригонометричні функції (рис.5.7, 5.8, 5.9, 5.10).

Функції і мають областю визначення всі

значення змінної . Множиною значень кожної з цих функцій є

відрізок .

Функція означена для всіх значень , крім . Множина значень: .

Функція означена для всіх значень , крім . Множина значень: .

Обернені тригонометричні функції (рис.5.11, 5.12, 5.13, 5.14).

- нескінченнозначна функція, обернена для функції . Область означення: ; область зміни . Якщо кожному значенню покласти у відповідність значення нескінченнозначної функції , що задовольняє умовам , одержимо однозначну функцію, яку будемо позначати і називати головним значенням функції .

Функція - нескінченнозначна, обернена для функції . Область означення: ; область зміни: . Якщо кожному значенню , покласти у відповідність значення нескінченнозначної функції , що задовольняє умовам , одержимо однозначно функцію, яку будемо позначати і називати головним значенням функції .

Функції і - нескінченнозначні, обернені відповідно для функцій і . Області означення: ; області зміни: , крім відповідно

і .

Рис.5.3 Рис.5.4

Рис.5.5 Рис.5.6

Рис.5.7 Рис.5.8

Рис.5.9 Рис.5.10

Рис.5.11 Рис.5.12

Рис.5.13 Рис.5.14

Якщо кожному значенню , , поставити у відповідність значення функції , що задовольняють нерівностям , то одержимо функцію, яку назвемо головним значенням багатозначної функції і будемо позначати .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: