Найпростіші множини дійсних чисел

Дамо означення найпростіших числових множин.

Між множиною дійсних чисел і множиною точок числової осі існує взаємно однозначна відповідність. Тому в математичному аналізі часто користуються множинами точок, розміщених на числовій осі.

10. Множина всіх дійсних чисел (всіх точок числової осі), які задовольняють нерівності

де і - довільні точки числової осі. Таку множину називають відрізком, або сегментом, і позначають символом

Часто замість нерівностей пишуть і читають:

належить відрізку ”. Точку при цьому називають лівим, а точку - правим кінцем відрізка

20. Множина всіх дійсних чисел (всіх точок числової осі), які задовольняють нерівності

Таку множину називають проміжком, або інтервалом, і позначають символом Точки і при цьому називають відповідно лівим і правим кінцем інтервалу. Замість нерівностей пишуть і читають:” належить інтервалу ”.

Інтервал відрізняється від відрізка тим, що кінці інтервалу не належать. Число називається довжиною як відрізка так і інтервалу

30. Множина точок числової осі, які задовольняють нерівності:

Такі множини точок називаються відповідно півінтервалом і піввідрізком і позначають

Зауважимо, що інтервали, півінтервали і піввідрізки можуть

бути й нескінченними і означати:

а) нескінченний інтервал - множину всіх значень що задовольняють нерівності

б) піввідрізки - множини всіх значень що задовольняють нерівності

Нехай - довільне дійсне число. Тоді інтервал де - будь-яке дійсне число, називається - околом точки . Точка , що лежить всередині цього інтервалу, називається центром околу, а число - радіусом околу, тобто - окіл числа - це множина всіх дійсних чисел які задовольняють нерівності , або

 

Функції




double arrow
Сейчас читают про: