Змішаний добуток векторів, заданих координатами

Нехай

.

.

Отже,

або

. (2.16)

Рис. 2.16

 

Висновок. Векторно-скалярний добуток трьох векторів заданих своїми проекціями, дорівнює визначнику третього порядку, складеному з цих проекцій.

З формули (2.16), користуючись тим, що при перестановці двох сусідніх рядків визначника його знак змінюється на протилежний і відповідно переставляються множники у мішаному добутку, вірна така рівність:

,

тобто кругова перестановка трьох множників векторно-скалярного добутку не змінює його величини.

Перестановка двох сусідніх множників змінює знак добутку. Із формули (2.16) випливає також, що .

Якщо три вектори компланарні (паралельні одній і тій же площині), тоді і, значить, - необхідна і достатня умова компланарності векторів і . Цей факт очевидний і з геометричних міркувань. Об’єм паралелепіпеда в цьому випадку дорівнює нулю.

Приклад 1. Знайти найкоротшу віддаль між двома прямими, якщо одна з них проходить через точку паралельно вектору , а друга проходить через точку паралельно вектору (рис.2.17).

Рис. 2.17

Р о з в ’ я з о к. Побудуємо вектор і проведемо через точку пряму паралельну , а через точку пряму , паралельну прямій . Тоді прямі і та і визначають собою дві паралельні площини. Віддаль між цими площинами і буде найкоротшою віддаллю між прямими і . На векторах , і будуємо паралелепіпед. Його об’єм

(куб. од.)

Знайдемо площу основи паралелепіпеда:

Тоді (кв. од).

Але . Звідси

(л. од.).

Приклад 2. Обчислити площу паралелограма, побудованого на векторах , де і - одиничні взаємно перпендикулярні вектори.

Р о з в ’ я з о к. Площа паралелограма дорівнює модулю векторного добутку векторів. Тому знайдемо

, бо

і .

Далі маємо . Оскільки і - одиничні взаємно перпендикулярні вектори, то .

Отже, (кв. од.).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: