Анализ базовых и альтернативных технологических процессов восстановления детали

 

Базовый технологический процесс – это такой процесс, который на современном этапе развития применяется в отрасли и является наиболее прогрессивным. Однако у каждой технологии имеется оптимальный срок действия, который определяется темпами научно-технического прогресса в области производства технологического оборудования, совершенствования ремонтных технологий и способов восстановления деталей машин и обработки конструкционных материалов, которые описаны в специальных технических и учебных источниках.

Выявление альтернативных способов и ТПВ производят на основе патентного поиска и анализа литературных источников с представлением краткого аналитического обзора. Выбор ТПВ также зависит в большей степени от материала восстанавливаемой детали, его физических и химических свойств.

Блок цилиндров двигателя ЗИЛ-130 изготовлен из серого чугуна СЧ 18-36.

Чугун - это сплав системы Fе - С, содержащий более 2,14%углерода и кристаллизация которого заканчивается образованием так называемого ледебурита. Чугуны относятся к литейным сплавам. Они обладают хорошими литейными свойствами: большой жидкотекучестью (способ­ностью расплава

 

свободно течь в литейной фор­ме, полностью заполняя ее и точно воспроизводя все контуры) и малой усадкой - уменьшение объема металла при охлаждении и кристаллиза­ции невелико, что позволяет получать качественные отливки сложной формы. Углерод в процессе кристаллизации чугуна мо­жет выделяться в связанном (в виде карбида железа) состоянии и в свободном состоянии - в виде графита (Г). Графит - это аллотропи­ческая модификация чистого углерода (другой модификацией является алмаз). Кристалличе­ская решетка графита - гексагональная, слои­стая, что делает его малопрочным и мягким (твердость его НВ не превышает 3 единиц). В отличие от метастабильного цементита графит химически и термически стоек; плотность его со­ставляет 2,5 г/см3. Темный цвет включения гра­фита придает изломам таких чугунов характер­ный серый оттенок (серые чугуны). Процесс образования в чугуне включения графита называ­ется графитизацией. Какой вид чугуна будет по­лучен при кристаллизации расплава - белый (с цементитом) или графитизированный (с графи­том) - определяется скоростью охлаждения.

Классификация графитизированных чугунов весьма проста: вид чугуна определяется формой включений графита.

Если графит имеет пластинчатую форму, то чугун называется серым. В высокопрочном чугуне графит имеет шаровидную форму, а в ковком - хлопьевидную.

Серый чугун получается непо­средственно в процессе кристаллизации с замед­ленным охлаждением; графит при этом имеет пластинчатую форму.

 В зависимости от степени графитизации мо­жет быть получена различная структура метал­лической основы (матрицы) серого чугуна: се­рый перлитный чугун со структурой П+Г, серый ферритоперлитный чугун со структурой Ф+П+Г; серый ферритный чугун со структурой Ф+Г.

Механические свойства серого чугуна как конструкционного материала зависят как от свойств металлической основы (матрицы), так и от количества, геометрических параметров и ха­рактера распределения включений графита. Чем меньше этих включений и чем они мельче, тем выше прочность чугуна. Металлическая основа в сером чугуне обеспечивает наибольшую проч­ность и износостойкость, если она имеет перлит­ную структуру. Наименьшей прочностью облада­ет серый чугун с ферритной основой. Относи­тельное удлинение при растяжении серого чугуна независимо от свойств металлической осно­вы практически равно нулю (δ≤0,5%).

Наиболее высокими механическими свойства­ми обладают модифицированные ферросилицием и силикокальцием серые чугуны. Модифициро­вание - добавка в расплав нерасплавляющихся измельченных частиц - обеспечивает измельче­ние графитовых включений.

Различают следующие марки серого чугуна: СЧ-00, СЧ 12-28, СЧ 15-32, СЧ 18-36, СЧ 21-40, СЧ 24-44, СЧ 28-48, СЧ 32-52, СЧ 35-56, СЧ 38-60. Буквы СЧ обозначают серый чугун; первое число указывает минимально допустимый предел прочности при растяжении в кг/мм2, а второе число – минимално

 

допустимый предел прочности при изгибе в кг/мм2 для данной марки чугуна.

Чугун по технологическим свойствам относится к группе плохосвариваемых конструкционных материалов в связи с образованием технологических дефектов, обусловленных его химическим составом и структурой. Поэтому при выборе метода устранения дефектов в чугунных корпусных деталях необходимо учитывать следующие особенности: высокую вероятность образования трещин; возможность образования твёрдых закалочных структур при быстром охлаждении чугуна; при расплавлении чугуна может произойти местный переход графита в цементит, от чего металл в данном месте получает структуру твёрдого белого чугуна; в закалённых и отбеленных зонах металл имеет высокую твёрдость и поэтому плохо поддаётся механической обработке; возможность появления пористости шва, обусловленной окислением углерода и обильным образованием газообразной окиси углерода, которая не успевает полностью выделиться из металла при его быстром затвердевании, отчего шов получается пористым.

С учётом этих свойств материала и проанализировав недостатки и достоинства каждого способа восстановления, выберем наиболее оптимальный и технологичный.

Таблица 2.1. Анализ альтернативных способов устранения дефектов блока цилиндров

 

 

Номер и

Наименование

дефекта

 

 

Альтернативные

способы

устранения

дефекта

 

 

Удельные показатели

альтернативных способов

устронения

 

 

Наименование

принятого

способа

устронения

tшг мин /дм2 W кВт Q кг β м2 Св %   Кд

 

1.Износ

нижней расточки под гильзу

 

 

Механическая обработка   23 2,6 2,4 4,4 - 0,86

 

Клеевые композиции

  Полимерные композиции 29 0,2 0,1 0,3 - 0,55
Электролитическое натирание 9,0 1,88 - 3,0 3,0 1,10
2.Отклонение соосности гнёзд под вкладыши коренных подшипников Механическая обработка 23 2,6 2,4 4,4 - 0,86 Механическая обработка

3. Деформация или износ гнёзд под вкладыши коренных подшипников.

 

Твёрдое железнение 27 3,1 0,2 6,5 31 0,58

Механическая обработка

Механическая обработка 23 2,6 2,4 4,4 - 0,86
  Полимерные композиции   29 0,2 0,1 0,3 - 0,55

Полимерные композиции. Применение пластмасс при ремонте техники по сравнению с другими способами позволяет снизить трудоёмкость восстановления детали на 20…30 %, себестоимость ремонта на 15..20 и расход материалов на 40…50%. Пластическими массами называют материалы, изготовленные на основе высокомолекулярных органических веществ и спо собные под влиянием повышенных температур и давления принимать

определённую форму, которая сохраняется в условиях эксплуатации изделия. Применительно к нашим дефектам применение полимерных композиций ограничивается тем, что они имеют низкую долговечность, кроме того возникнут трудности с их нанесением при ремонте гнёзд коренных

подшипников

Электролитическое натирание. Один из перспективных и экономичных способов восстановления посадочных мест под подшипники, втулки, гильзы корпусных деталей с износами, не превышающими 0,6 мм на сторону.

Сущность способа заключается в следующем. В отверстие детали вводится нерастворимый анод, обшитый абсорбирующей тканью, и приводится во вращение. В образовавшийся рабочий зазор между тканью анода и поверхностью отверстия подаётся электролит, содержащий в растворе серную кислоту, соли закисного железа, цинка и марганца.

Под действием электрического тока на поверхности отверстия образуется осадок железо-цинкового покрытия. Величина зерна покрытия, форма и ориентация кристаллов, определяющие его свойства, зависят от температуры, состава электролита и плотности тока. Изменяя эти показатели, можно получить осадки сплава с микротвёрдостью в пределах 1400…1900 МПа.

Недостатки этого способа – это высокая стоимость, трудоёмкость, требует специального оборудования.

Твёрдое железнение. Один из способов восстановления деталей гальваническими покрытиями. Железнение характеризуется хорошими технико-экономическими показателями: исходные материалы и аноды дешевые и недефицитные; высокие выход металла по току (85…95 %) и производительность – скорость осаждения железа составляет 0,2…0,5 мм/ч; толщина твёрдого покрытия 0,8…1,2 мм; возможность в широких пределах регулировать свойства покрытий (микротвёрдость 1600…7800 МПа) в зависимости от их назначения обусловливает универсальность процесса; достаточная износостойкость твёрдых покрытий; покрытия хорошо хромируются, что

позволяет при необходимости повышать износостойкость детали нанесением более дешёвого, чем хромовое, комбинированного покрытия (железо+хром).

Недостатки этого способа: высокая трудоёмкость приготовления операции, наличие специального оборудования.

Механическая обработка. Это одна из основных операций при восстановлении деталей. В ряде случаев её применяют как технологическую операцию, за которой следуют другие операции, восстанавливающие деталь.

Применительно к данной детали и дефектам позволяет полностью отремонтировать деталь без каких-либо дополнительных воздействий.

Рассмотрев перечисленные выше способы восстановления выбираем следующие способы, как наиболее простые, дешёвые и не требующие специальных установок, кроме оборудования для механической обработки:

Дефекта №1 – растачивание посадочного места с последующей установкой кольца на эпоксидном компаунде.

 Дефект №2 и №3 – восстановление за счёт конструкторско-технического резерва детали, т.е. фрезерование плоскостей разъема крышек коренных подшипников и последующим растачиванием отверстий до номинального

размера. При этом заодно растачиваются отверстия под втулки распределительного вала в диаметр больше номинального на двойную величину смещения коленчатого вала.

Дефект №4 Запрессовка новых втулок с последующем развертыванием, шероховатость поверхности 8-го класса. 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: