Использование гистограммы изображения

Очевидный способ выделения объектов из окружающего фона состоит в выборе значения порога t, разграничивающего моды распределения яркостей на изображении. Простейший из методов пороговой обработки состоит в разделении гистограммы изображения на две части с помощью единого глобального порога. После этого сегментация изображения осуществляется путем поэлементного сканирования изображения, при этом каждый пиксель отмечается как относящийся к объекту или фону, в зависимости от того, превышает ли яркость данного пикселя значение порога t или нет. Успешность этого метода целиком зависит от того, насколько хорошо гистограмма изображения поддается разделению.

Определение величины порога с помощью гистограммы яркостей является простым методом, который позволяет достичь «чистой» сегментации, если гистограмма изображения носит четко выраженный бимодальный характер. Такая форма гистограммы означает, что на изображении можно различить два вида сравнительно часто встречающихся пикселей – яркие и темные. При этом гистограмма легко разделяется с помощью одиночного глобального порога t, расположенного во впадине между пиками гистограммы (рисунок 1).

Рисунок 1. Впадина между пиками гистограммы

При использовании такого порога изображение будет разделено на два класса – объекты и фон. Так как основная цель порогового преобразования состоит лишь в получении бинарного изображения, то выбор цвета объекта или фона – черный или белый – может быть произвольным. Поэтому для их выделения можно использовать бинаризацию с нижним или верхним порогом.

Для автоматического выбора значения порога t в случае бимодальной гистограммы может применяться следующий итеративный алгоритм:

1. Выбирается некоторая начальная оценка значения порога t.

2. Выполняется сегментация изображения с помощью порога t. В результате образуются две группы пикселей: G 1, состоящая из пикселей с яркостью больше t, и G 2, состоящая из пикселей с яркостью меньше или равной t.

3. Вычисляются средние значения μ 1 и μ 2 яркостей пикселей по областям G 1 и G 2 соответственно.

4. Вычисляется новое значение порога

5. Повторяются шаги со 2-го по 4-й до тех пор, пока разница значений порога t в соседних итерациях не окажется меньше наперед заданного параметра ε.

Отметим, что если объекты и фон на изображении занимают сравнимые площади, то хорошим начальным приближением для порога t является средний уровень яркости изображения. Если же занимаемая объектами площадь мала по сравнению с площадью фона (или наоборот), то одна из групп пикселей будет доминировать в гистограмме, и средняя яркость окажется не слишком хорошим начальным приближением. В подобных случаях более подходящим начальным значением t является полусумма минимального и максимального значений яркости. Параметр ε используется для остановки алгоритма, когда изменения на каждой итерации становятся малы по сравнению с заданным параметром. Такие меры применяются, когда важным соображением является скорость вычислений.

Следует отметить, что гистограммные методы пороговой обработки не гарантируют, что пиксели, относящиеся к одной и той же моде распределения яркостей, лежат на изображении рядом, образуя связные области. Гистограмма содержит только лишь информацию о частоте встречаемости на изображении пикселей с различными уровнями яркости, но не содержит информации об их пространственном распределении. Это является основным недостатком использования гистограмм для сегментации изображений. Однако, несмотря на то, что результаты, получаемые с помощью гистограмм, не всегда являются удовлетворительными, данный метод широко используется, так как является простым и быстрым.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: