Метаболизм кофермента Q

Гибсон изучил путь биосинтеза CoQ на мутантных штаммах E. Coli [36] путем введения мутаций по восьми ubi генам (А-Н), ответственным за ферменты биосинтеза CoQ. Вообще, убихинон (UQ) представляет собой молекулу, в состав которой входит 2,3-диметокси-5-метил-бензохиноновое кольцо, соединенное в шестом положении с гидрофобным изопреноидным хвостом (от 6 до 10 звеньев). В клетке изопреноидная цепь синтезируется в составе полипренилпирофосфата через мевалонатный путь. Предшественник же хиноидного кольца– р-гидроксибензоат– синтезируется из аминокислот тирозина или фенилаланина. Специальная трансфераза (ubi A) «сшивает» эти молекулы, и затем происходит декарбоксилирование, гидроксилирование и метилирование кольца в определенных положениях. В аэробных условиях в гидроксилировании задействован молекулярный кислород, а в анаэробных – вода. Метилирование идет за счет аденозилметионина. Похожие механизмы синтеза были обнаружены для дрожжей и клеток печени крыс, где основные различия процессов касаются порядка и типа модификаций бензохинонового кольца [37].

 

Функции кофермента Q:

Исследования последних лет показали, что помимо основной своей функции переносчика электронов в дыхательной цепи, кофермент Q выполняет еще ряд немаловажных функций.

Так, кофермент Q и его метаболиты являются важнейшими естественными гидрофобными антиоксидантами, предотвращающими перекисное окисление липидов, карбонилирование белков и накопление токсичных продуктов. Предотвращение опосредованного окислительным стрессом повреждения внутриклеточных структур, в первую очередь митохондрий, препятствует инициации гибели клеток по апоптотическому пути и тканевой дисфункции, приводящей к развитию ряда нейродегенеративных заболеваний, ишемии сердца и других патологических проявлений, а также при старении. CoQ участвует и в различных транспортных системах.

В эукариотических клетках существует специальная система транспорта электронов через плазматическую мембрану. НАДН-зависимая CoQ-редуктаза на внутренней стороне плазмалеммы восстанавливает убихинон, который, в свою очередь, переносит электроны на фермент НАДН-оксидазу (NOX локализованна на внешней стороне мембраны). NOX называется так, потому что раньше думали, что она функционирует как фермент, окисляющий экзогенный НАДН. А на самом деле основными терминальными акцепторами электронов, восстанавливаемыми NOX, являются внеклеточные радикалы аскорбата, молекулярный кислород (до воды или супероксида O2 . ) и белковые дисульфидные связи.

Предположительно, CoQ-зависимая NOX участвует в процессах регуляции уровня NADH в цитозоле, а также может быть связана с регуляцией клеточного роста и дифференцировки. Крейн предполагает возможное участие локализованного в плазмалемме CoQ в активации тирозин киназы и запуске ряда сигнальных путей, приводящих к ранней экспрессии генов [10]. В результате окисления убисемихинона образуется перекись водорода, индуцирующая тирозин киназу (H2O2 скорее всего выполняет сигнальную роль).

CoQ также участвует в экстра-митохондриальном электронном транспорте. Лизосомы тоже содержат НАДН-зависимую CoQ редуктазу, которая, возможно, участвует в образовании кислой среды лизосомального люмена. В этом случае восстановление CoQ рассматривается как два последовательных одноэлектронных процесса, с участием ФАД и цитохрома b5, а молекулярный кислород выступает в роли терминального акцептора [37].

CoQ принимает участие в регуляции физико-химических свойств мембран, проницаемости митохондриальных мембран (взаимодействует с РТР, permeability transition pore) и в активации митохондриальных разобщающих белков (uncoupling proteins, UCP).

Во внутренней мембране митохондрий локализован ряд белков-разобщителей (uncoupling proteins, UCPs), которые способны транслоцировать протоны из межмебранного пространства внутрь митохондрий [38]. Создаваемый дыхательной цепью протонный градиент оказывается разобщенным с процессом окислительного фосфорилирования, и запасаемая в виде ΔμH энергия частично рассеивается, не переходя в энергию макроэргических связей АТФ.

Известно пять различных белков-разобщителей в митохондриях многих растений и животных (гены ucp 1-5 для человека). Наиболее изученный белок UCP1 локализован в буром жире, он активно функционирует и ответственен за термогенез. В остальных тканях, где разобщение не играет такой масштабной роли, белки-разобщители представлены в небольших количествах. Помимо термогенеза, предполагается участие UCPs в подавлении генерации кислородных радикалов, а также их причастность к таким болезням, как ожирение и диабет. Эчтай (Echtay) использовал липосомы со встроенными в них бактериальными UCPs и показал, что CoQ является облигатным кофактором для этих белков [12]. Добавление CoQ в смеси с жирными кислотами к липосомам активировало транспорт протонов разобщающими белками, и наоборот, транспорт прекращался в отсутствие коэнзима Q. При этом CoQ с маленькой длиной изопреноидного хвоста (0-2 единицы) практически не взаимодействуют с UCPs, максимальная же активность наблюдается при введении CoQ10. Предполагается следующая схема участия CoQ в функционировании UCP: протон с жирных кислот переносится молекулой CoQ на некоторую акцепторную группу белка-переносчика, который уже переправляет его в матрикс.

Внутренняя мембрана митохондрий малопроницаема для различных ионов и небольших молекул. Транспорт необходимых веществ осуществляется через специальные белковые транспортеры и ионные каналы. Такая непроницаемость необходима для формирования протонного градиента, но иногда, вследствие явления неспецифической проницаемости мембраны (мембрана теряет свои барьерные функции и становится проницаемой для всех молекул с молекулярной массой до 1,5 кДа), протонный градиент теряется, нарушается баланс ионов, происходит гидролиз АТФ [21].

Кроме того, показана критичность резкого изменения проницаемости внутренней митохондриальной мембраны при апоптозе, одной из начальных стадий которого является выход проапоптических белков из митохондрий в цитоплазму (цитохром с, прокаспаза-9 и др.) [22]. Такая неспецифическая проницаемость связана с особым внутренним митохондриальным комплексом РТР (permeability transition pore) [13]. На комплекс РТР влияет целый ряд факторов (более 40), в том числе концентрация ионов кальция в матриксе, скачки мембранного потенциала, рН матрикса, циклоспорин А, окисленные глутатион и пиридиновые нуклеотиды, образующиеся при оксидативном стрессе, коэнзим Q и его гомологи (и как ингибиторы, и как индукторы). Предполагается, что хиноны влияют на РТР через взаимодействие с неким сайтом связывания, а не через характерные окислительно-восстановительные реакции [23]. Похоже, что в случае использования аналогов CoQ играет роль не тип заместителей в бензохиноновом кольце, а длина и степень насыщенности изопреноидной цепи. Коэнзим Q (как ингибитор) способен предотвращать деполяризацию внутренней митохондриальной мембраны, выход цитохрома с и активацию каспазы-9 в кераноцитах в ответ на апоптические стимулы, в связи с чем можно предположить его ингибирующий эффект на открытие неспецифической митохондриальной поры.

Также CoQучаствует в модуляции количеств β2-интегринов, презентируемых на поверхности моноцитов крови и в восстановлении функций эндотелия в случае их нарушения. Еще он окисляет сульфид в дрожжах и принимает участие в образование дисульфидных связей в бактериях.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: