Открытие дыхательной цепи

Началом изучения дыхания принято считать классические опыты А. Лавуазье, который еще в 1777 году показал, что “чистый воздух, войдя в легкие, выходит из них частично в виде связываемого воздуха или меловой кислоты. Следовательно, чистый воздух, проходя через легкие, претерпевает такое же разложение, которое имеет место при горении угля”. Теперь мы знаем, что меловая кислота это ни что иное, как углекислый газ (CO2).

К началу XX века уже было известно, что ткани млекопитающих катализируют окисление органических кислот кислородом воздуха. Тунберг и Виланд предположили существование в тканях дегидрогеназ (активаторов атомов водорода в молекулах субстратов). Варбург же считал, что катализ обусловлен железосодержащим ферментом (дыхательным ферментом), активирующим химически инертный кислород. Оба оказались правы. В тоже время Кейлин обнаружил в тканях пигменты (цитохромы), окраска которых зависела от наличия кислорода в клетке и от активности дыхательного фермента Варбурга. В 50х годах стало ясно, что некоторые дегидрогеназы, цитохромы Кейлина и дыхательный фермент Вырбурга (дыхательная цепь) прочно связаны с внутренними мембранами митохондрий. В 60х годах Грин разработал методы разделения, выделения и очистки компонентов дыхательной цепи.

Уже в 30х годах была установлена тесная связь между процессами окисления (поглощения кислорода) и образования АТФ (фосфорилирование), но вот природа это связи была непонятна вплоть до 60х годов.

В 1961 году Митчелл предложил идею хемиосматического энергетического сопряжения в дыхательной цепи. Можно выделить три основных положения принципа хемиосматического сопряжения [54]:

1. Внутренняя мембрана митохондрий, где происходят окислительно-восстановительные реакции дыхания, непроницаема для ионов водорода (Н+) (точнее, протон диффундирует через двойной фосфолипидный слой очень медленно по сравнению со скоростью потребления кислорода). В то же время мембраны хорошо проницаемы для воды и благодаря электролитической диссоциации Н2О D Н+ + ОН- запас протонов в водных растворах неограничен.

2. Внутренняя мембрана митохондрий ассиметрична: одни компоненты дыхательной цепи контактируют с матриксом (например, активный центр комплекса I), другие расположены внутри мембраны (например, убихинон), третьи контактируют с межмембранным пространством (например, цитохром с).

3. Разрушение мембраны не препятствует окислению НАДН кислородом, а даже ускоряет дыхание. Энергетическое сопряжение (синтез АТФ) при этом полностью прекращается: происходит разобщение процессов переноса электронов и запасания энергии. Для разобщения необязательно полностью разрушать мембрану – достаточно, сохраняя ее структуру, добавить вещества, резко повышающие проницаемость мембраны для протонов.

Спустя примерно двадцать лет хемиосмотическая концепция сопряжения транспорта электронов и образования АТФ в дыхательной цепи стала общепринятой теорией. И по сей день продолжаются работы по изучению и детальной расшифровки всех участников дыхательной цепи.

Организация дыхательной цепи

Дыхательная цепь является частью процесса окислительного фосфорилирования. Компоненты дыхательной цепи катализируют перенос электронов НАДН+Н+ или восстановленного убихинона (QH2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН+Н+ и, соответственно, QH2) и акцептора (О2) реакция является высоко экзергонической. Большая часть выделяющейся при этом энергии используется для создания градиентов протонов и, наконец, для образования АТФ с помощью АТФ-синтазы.

Дыхательная цепь включает три белковых комплекса (комплексы I III IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики – убихинон (кофермент Q) и цитохром с (рис. 9). Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза иногда называется комплексом V, хотя она не принимает участие в переносе электронов.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками. К ним принадлежат флавин (ФМН) или ФАД, в комплексах I и II, железосерные центры (в I, II и III) и группы гемма (II, III и IV).

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН+Н+ комплекс I переносит электроны через ФМН и Fe/S- центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальный дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин. При этом окисленная форма кофермента Q восстанавливается до ароматического убигидрохинона. Последний переносит электроны на комплекс III, который поставляет их через два гемма b, один Fe/S- центр и гемм с1 на небольшой геммсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра. (Cua и Cub) и геммы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2-, который связывает два протона и переходит в воду. Поток электронов сопряжен с образованными комплексами I, III и IV протонным градиентом.

Рассмотрим теперь по подробнее все комплексы, составляющие дыхательную цепь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: