Наследие античности: вклад Пифагора, Аристотеля, Архимеда

 

2.1.       Пифагор (предположительно 580-500 до р.Х., Самос, потом Кротон в Италии, место смерти неизвестно)

 

(а) «Все есть число». И действительно, Пифагору удалось установить связь между такими вещами как:

–  Арифметика: Пифагорейские числа; тетрада (квадратные числа – выкладывание и счет камешков, отсутствие нуля)

– Музыка: Консонантные созвучия как простые отношения 1:2, 1:3 и т.д., между длинами струн (точнее, частотой звука, о чем Пифагор не знал)

– Геометрия: Теорема Пифагора и правильные («Платоновские») многогранники

– Астрономия: Расположение планет вокруг общего центра, не солнца!, а «анти-Земли» с диаметрами, отражающими те же числовые соотношения (Понятия о «Музыке сфер», термин «космос» – порядок)

Эти четыре лежат в основе классического образования до сих пор.

С тех пор идея о том, что математическая красота сама может являться критерием истины, неоднократно подтверждалась. Один из популярных примеров – когда П. Дирак описал движение электрона (отрицательный заряд) так, что решение уравнения оказалось двойным, вместе с отрицательным корнем обнаружился равновеликий положительный, Дирак объявил о необходимости существования «позитрона», который и был действительно открыт вскоре как физический объект.

 

(б) Идея математического (= логического) доказательства. Перевод математики из полуэмпирической дисциплины в разряд теоретической (т. е. устроенной как система вывода: аксиомы – правила вывода – теоремы), программа блестяще реализованная «Началами» Эвклида, сочинением, посвященным построению геометрии плоскости, включая доказательство существования ровно пяти правильных многогранников.

 

(в) Теорема Пифагора (сумма квадратов катетов равна квадрату гипотенузы) – Открытие иррациональных чисел (длина диагонали квадрата со стороной единица – sqrt(2) не может быть представлена в виде отношения натуральных чисел, так как это приводит к противоречию) – Первый кризис математики: вместо естественной для нас идеи о том, что для выхода из кризиса надо пополнить множество чисел – включить туда иррациональные числа, Пифагор преодолел проблему, переведя всю арифметику на язык геометрии, так что число стало соответствовать длине интервала, сложение чисел – соединению интервалов, умножение чисел – вычислению площади соответствующего прямоугольника и т.п. Наряду с некоторыми положительными моментами (очевидность коммутативности и ассоциативности, общая наглядность) – колоссальные недостатки: например, невозможность оперировать более, чем с двумя числами одновременно, невозможность позиционной системы счисления, отсутствие алгебраической нотации, в целом задержавшие развитие математики на 2000 лет!

 

(г) Золотое сечение: с пропорцией x=(1-x)/x, x=(-1±Ö5)/2 – числа Фибоначчи. В основе пентаграммы – правильной пятиконечной звезды.  

Вклад Аристотеля

Аристотель (384-322 до р.Х., Стагира-Афины-..?) – ученик Платона (, который стал сам учить других учеников, за что был изгнан Платоном из здания, подаренного ему Академом, и продолжал учить, прогуливаясь по саду (перипатетики); позднее был приглашен царем Македонии Филиппом в наставники своему сыну Александру, который очень уважал Аристотеля (и философию вообще – сохранился рассказ о его посещении Диогена, который учил, что человек должен жить естественно, как собаки (кинизм), и сам жил в большой винной амфоре – «Диоген, могу ли я что-нибудь для тебя сделать,» - «Да, конечно: отойди, ты загораживаешь свет.» - «Я бы хотел быть Диогеном, если бы не был Александром!») и даже брал его с собой в походы.)

 

Он оформил античную науку; его утверждения, даже и неверные, признавались до 16-17 веков. Можно сказать, что современная наука первоначально развивалась путем эвристической проверки и опровержения Аристотелевских принципов. Для нас интересны три аристотелевских понятия.

 

(а) Причинность по Аристотелю:

Четыре вида:

- материальная: часть-целое,

- формальная: целое-часть,

- эффективная -современное понимание,

- целевая (конечная) - не «почему», а «зачем», включая психологическую мотивацию.

 

Понимал циркулярность причинных сетей.

         

Исследование причин – одна из основных доминант познания. Когда найдена причина, возникает теория, описывающая механизм рассматриваемого явления и процесса. Отметим, что каждая найденная причина (механизм) открывает новый, объемлющий, сценарий с тем же самым вопросом «почему».

 

(б) Логика – силлогизмы Аристотеля (силлогизм: предложение о связи А и В, вытекающее из двух посылок, о связи А и Б, и о связи Б и В).

 

Предложения бывают 4 типов: утвердительное - отрицательное, универсальное -частное (кванторы всеобщности и существования).

 

«Все люди смертны. Кай – человек. Значит, Кай смертен.»

 

Имеются три понятия, А Б и В.

 

Посылки дают утверждения о связи А с Б (Большая посылка) – 4 вида ут/от – ун/ча, связи Б с В (Малая посылка), тоже 4 вида, а вывод – о связи А с В, тоже 4 вида – итого 64. Поскольку каждая связь может иметь одну из 2 фигур (А есть Б или Б есть А), то всего 256 возможных силлогизмов.

 

Из них только 24 правильных. Например, «Если некоторые А есть Б, а некоторые Б – В, то все А являются В» - чепуха, а вот «Если все А есть Б, а все Б – В, то все А являются В» - хорош. Но и часть правильных – не нужна, поскольку они выражают частные случаи других силлогизмов.. Например, «Если все А есть Б, а все Б – В, то некоторые А являются В» - верно, но верно и значительно более сильное заключение, что «все (а, значит, и некоторые) А являются В». 

 

Два пути современного развития этих принципов, которые можно выразить в терминах интенсиональный – экстенсиональный. Что это такое?

Любое понятие можно трактовать двояко. С одной стороны, это термин, включённый в какую-то область знаний (), обычно даже определяемый в терминах этой области знаний. С другой стороны, понятию соответствуют конкретные объекты, подпадающие под него. Например, «компьютер» может быть определён как цифровое устройство для определенных действий с числами, а с другой стороны, может быть представлен множеством всех вычислительных устройств, произведённых такими-то компаниями и находящихся в пользовании в офисах и квартирах. Первый, «определительный», «теоретический», аспект называется интенсиональным, второй, «перечислительный», «эмпирический», аспект, – экстенсиональным.

 

Математическая логика пошла по интенсиональному пути через идею выводимости. В математике идея, что все можно вывести из нескольких точно сформулированных понятий, удовлетворяющих четким аксиомам, была очень убедительно доведена до совершенства в так называемой «программе Гильберта» (Д. Гильберт 1862=1943 Германия, последний великий математик), попытке свести математику к математической формальной логической машине. Оказалось, что путь этот приводит к гносеологическим трудностям. Австрийский математик Курт Гёдель доказал, что если такая формальная система включает арифметику (т.е. целые числа и арифметические операции с ними), то существует истинное высказывание, не выводимое из аксиом. Можно сказать – ну и что, давайте добавим это высказывание к списку аксиом, и все будет в порядке. Увы – нет, ведь теорема Геделя применима и к новой, расширенной системе: найдется другое не выводимое высказывание. Интенсиональный путь заведомо не полон, никакая формальная система не сможет вывести все правильные утверждения.

 

В этой связи поражает, что исследования по искусственному интеллекту вначале в основном шли по интенсиональному пути – грубо говоря, сводились к автоматизации логического вывода – долго, пожалуй до начала 90х, когда ведущие деятели просто сошли со сцены, не оставив никаких сколь-нибудь интересных результатов, разве что концепцию экспертной системы и язык ПРОЛОГ, предназначенный для реализации формальных построений. В этой связи припоминаю, что в 1974 в Тбилиси была организована – чуть ли не впервые в СССР – Международная конференция по Искусственному интеллекту. Меня включили в список рассылки, чем я был очень доволен, и мы послали туда новый метод обобщения данных – агрегирование больших графов в малые, что я считал – и считаю – безусловно относящимся к искусственному интеллекту: по-моему, обобщение фактов или структур – одна из главных интеллектуальных операций. Увы, Оргкомитет так не считал, нашу рукопись мне вернули; на манускрипте округлым девичьим почерком был выведен вердикт: «Никакого отношения к искусственному интеллекту».

 

Экстенсиональный путь усиленно развивается в настоящее время. Дисциплина «Разработка данных» (Data mining and knowledge discovery) – деятельность по выявлению «интересных» образов или закономерностей в наблюденных данных – фундаментальная часть усилий по искусственному интеллекту – лучше отсчитывать с 90х, хотя, конечно, разрозненные усилия предпринимались с 60х. Согласно этому подходу, каждое понятие представляется неким предикатом, определенным в терминах признаков наблюденных данных и тем самым может соответствовать тому подмножеству множества обрабатываемых данных, на котором оно истинно. Это позволяет перевести логические операции на язык операций над множествами.

Логическое отношение следования соответствует теоретико-множественному включению (Рис. 1).

 

Рис. 1: Иллюстрация некоторых логических отношений в терминах подмножеств.

Понятие ассоциации, одно из основных в разработке данных, соответствует «интересной» продукции АÞБ: как (а) множество О(А) достаточно велико, так и (б) множество О(АÙБ)=О(А) Ç О(Б) достаточно велико, т.е. составляет значительную долю от О(А). Вычислительно эти свойства обеспечиваются пороговыми значениями, например, чтобы О(А) составляло не менее 30% от всей выборки (условие (а)), а О(АÙБ) – не менее 90% от объема О(А) (условие (б)). Условие (б) обеспечивает факт импликации (логического следования), а условие (а) – ее интересности, с точностью до заранее фиксированных пороговых значений. Будучи применен к анализу данных о транзакциях (индивидуальных покупках) в цепи американских супермагазинов «Хоум Депо (Всё для дома)» в середине 90х, перебор всех «интересных» продукций привел к успеху – одна из существенных глав в любом учебнике по разработке данных (дата майнинг).

 

Проблемы –

(аа) определение пороговых значений для экспликации двух «достаточно больших величин и

(бб) слишком много «интересных» импликаций, зачастую значительно больше по объёму, чем исходные данные.

 

Вероятно, поэтому задача получения нетривиальных силлогизмов не очень пока рассматри-вается в анализе данных, кроме, пожалуй, российского исследователя Чеснокова С.В., который, впрочем, тоже был занят в основном импликациями (Детерминационный анализ), да и далек от основных научных сообществ.

 

Я вижу ещё одну проблему с силлогистикой:

(вв) при вычислениях типы множеств не различаются.

 

Например, базовый силлогизм про Кая, который смертен, потому что тоже человек.

«Кай – человек» - это индивидуальное суждение или одно-элементное множество?

 

Математика заплатила большим, третьим (первый – открытие, что не все числа рациональны; второй – открытие, что среди корней уравнений с целочисленными коэффициентами могут быть комплексные числа), кризисом около 100 лет назад. Оказалось, что понятие «множества» как совокупности объектов, объединенных каким-либо признаком, приводит к парадоксу – одновременно истинны как некое утверждение, так и его отрицание. Б. Рассел сформулировал это как историю о Севильском цирюльнике, который бреет всех тех и только тех жителей Севильи, которые не бреются сами: может ли он побриться сам? (с одной стороны, не может, но тогда – обязан!) В терминах множеств: рассмотрим «множество всех абстрактных понятий» Ф. Очевидно, это множество само – абстрактное понятие, т.е. ФÎФ. Рассмотрим теперь множество Г всех таких множеств, которые не являются своими элементами. Можно ли утверждать, что ГÏГ? Если нет, то Г удовлетворяет определению и, значит, ГÎ Г – парадокс! Чем опасен этот парадокс – тем, что позволяет, в вычислительном плане, вывести любые утверждения; как известно, в математической логике импликация А Þ Б всегда верна, если А ложно.

 

Современные объектно-ориентированные языки такие как Джава или Си++ широко используют принадлежность (через наследование классов), и, вероятно, от подобного парадокса избавлены – через понятие instance – конкретного экземпляра объекта.

 

(в) Классификация – это понятие после Аристотеля практически не развивалось (и накопило много повседневных смыслов – вспомните американские classifieds в газетах и classified files в офисах), а между тем, для меня оно одно из главных, по крайней мере, с позиций разработки искусственного интеллекта. Я формулирую это так: «Понятие классификации для описания интеллектуальных систем так же важно, как понятие функции для описания физических систем. Только в классификации пока ещё не нашлось своих Ньютона и Лейбница.» Остановлюсь на этом подробнее.

 

Аристотель рассматривал классификации, которые обычно называют таксономиями, такие, например, как универсальная библиотечная классификация.

 

Согласно Порфирию (133 г. после р.Х.), Аристотель рассматривал 5 основополагающих понятий (Predicables) в учении о классификации:

     Genus: a set of species (Род - множество видов).

     Species: an element of a genus (Вид – элемент рода).

     Difference: an attribute added to the genus name to specify a species (Атрибут – признак, выделяющий вид из рода).

     Property: a species modality which is characteristic to the genus, although not involved in the genus definition (Свойство –характеристика видов, одинаковая для всех видов данного рода, но не использованная в определении рода).

     Accident: a species attribute, modalities of which differ for different species (Признак вида, который.может различаться на разных видах).

 

Эти понятия хорошо работают в таксономиях. Таксономия – это классификация реально сушествующих вешей, такая как Линнеевская классификация флоры и фауны (растений и животных) – крупные деления по произвольным единицам строения (позвоночные, насекомые и пр.), а мелкие деления (на уровне семейства и вида) – по сходству на уровне совокупности признаков. Удобно представлять таксономию классификационным деревом (Карл Линней, 1707--1778). Подобные классификации делают для многих областей науки (например, ACM Classification of Computer Subjects 1998 или классификации протеиновых структур такие как CATH и SCOP) и техники (в основном для стандартизации продукции). В терминах такой классификации, род – это одна из внутренних вершин дерева, виды – её дети, атрибут – основание деления рода на виды, свойства – признаки, одинаковые для всех видов – детей, а признаки – обычные характеристики, по которым виды могут сравниваться. Работающая таксономия содержит четыре компонента:

(1) иерархическая, обычно дерево-образная организация элементов рассматриваемого множества, листьями которой являются сами элементы, а внутренние вершины – таксоны – соответствуют классам элементов в под-дереве, корнем которого является таксон;

(2) описание таксонов;

(3) номенклатура – список названий всех таксонов;

(4) идентификационный ключ – правило, позволяющее найти местоположение в таксономии любого ее элемента.

 

До последнего времени эта схема оставалась неизменной – а что тут менять, когда все – роды, виды и их соотношение – определено данной областью знания? Не нравится классификация – развивай знание данного явления или процесса.

 

Но компьютеры вторгаются в области, где знаний мало, а данных много: Компания хочет оценить перспективные сегменты ранка для своего продукта. Разработчик сложного химического вещества хочет знать его свойства без проведения объемных испытаний. Международная организация хочет представить себе интегральную схему разработок в области нанотехнологии. Комплексный анализ функций нового вируса невозможен без включения его в эволюционное древо родственных вирусов. Эти ситуации порождают проблему построения надежных классификаций по эмпирической информации при отсутствии надежных теоретических представлений о явлении. Возникает необходимость выяснения роли, структуры и механизма действия классификации в подобных ситуациях. Возникаюшие вопросы касаются критериев классификации, роли отдельных переменных, интерпретации компьютерных решений и пр. 

 

Развиваемые подходы – кластер-анализ (cluster analysis), решающие деревья (decision trees), теория умозаключений (knowledge base reasoning) и пр. основаны на очень поверхностных представлениях о классификации. Работ по существу вопроса – единицы.

 

Стоит упомянуть работу российских ученых Мейена и Шрейдера (1976), в которой сделан шаг к анализу двойственного к таксономии понятия архетипа. Архетип – это как бы скелет организма, в соответствии с которым организуются его свойства.

 

В моей книге (Mirkin 1996) обращено внимание на роль классификации в качестве связующего звена между разными аспектами явлений:

- структурой и историей («корреляция» в геологии, соответствие между порядком пластов и временем их отложения),

- структурой и функцией (периодическая таблица),

- структурой, историей и функцией (в биологической таксономии речь идет о структуре частей организма, их функциях, и эволюции организмов),

- структурой и функцией (тип личности) (форма ногтей – тип личности, например, «Короткие ногти – энергичный, любознательный, интуитивный», «Очень большие квадратные ногти – холодный и эгоистичный», и т.п., Bosanko, 1983),

- функцией, установкой (attitude – отношение?) и действием (в психологической теории «traits», тип характера определяет интересы и предпочтения (установки), а также выбор профессиональной деятельности и образа жизни, Brew 1987),

-   структурой, установкой и действием (в социологии Маркса класс создает партию, которая приводит к революции).

 

Эти примеры показывают, что каждое реальное явление или процесс могут быть охарактеризованы триадой структура-история-функция, к которой в человеческих системах добавляются ещё два аспекта – (психологическая или политическая) установка и (физическое или политическое) действие. По-моему, интересно «навесить» эту структуру на какие-нибудь современные процессы. Подобного рода анализ выполнен в популярном учебнике M.G. Roskin, Countries and Concepts: Politics, Geography, Culture, Longman, 11th Edition, 2010. Автор рассматривает основные страны мира, включая Россию в единообразной схеме: (1) вклад прошлого (в России – наибольшая страна мира, особенности славян, русская автократия, насильственная модернизация, войны и коммунизм), (2) ключевые институты (в России - сталинская модель, бюрократия, неизменность паттерна), (3) политические установки (В России - иллюзия общества, расизм, отсутствие культуры демократии), (4) модели взаимодействия, (5) дискуссии. Очевидна связь (1) – история, (2) – структура, (3) и (5) – установка, (2) и (4) – функция, и пр.  

 

Ещё одна замеченная вещь: неполная корреляция между структурой на множестве элементов и функцией, которую они выполняют в действии: в языкознании, совокупность слов разделена на части речи (глагол, сушествительное, и пр.), которые используются языком в предложениях в соответствующей функции (сказуемое, подлежащее и пр.). Например, обычно роль сказуемого в предложении выполняется глаголом, но вот в предложениях «Он мастер. У него характер твёрже стали.» это не так. Аналогично, члены парламента обычно голосуют согласно платформе партий, которые они представляют, кроме каких-то специальных случаев, которые отражают их личную историю. То же – пространственная конформация белков. Возможно, таким пластичным способом отражается необходимость адаптации к меняющимся ситуациям.

 

Все большее значение приобретают неаристотелевские формы классификации. Из них наиболее популярна типология, задаваемая совокупностью типов и применяемая на начальных этапах постижения феномена. Тип – это определенная комбинация значений признаков. Например, древнее деление темпераментов на 4 типа (холерик, флегматик, сангвиник, меланхолик) было сформировано по превалирующей в организме «жидкости – хумору» (отвергнуто наукой, но реинтерпретировано недавно в терминах силы и скорости реакции (высокая – низкая)). В эмпирических областях типы могут быть представлены конкретными представителями (виноделие, минералогия, литературоведение («Печорин – лишний человек»)). В отличие от таксономии, типология не обязательно предусматривает четкое разбиение – (а) принадлежность к типу может быть менее 100% (fuzzy set), и (б) множество типов не обязательно покрывает все возможности – неполная классификация.

 

Рис. 2. Типы (слева) и страты (справа).                                             

 

К этому примыкает стратификация, в которой классы представляют не типы, а страты такие как классы семей разного дохода – с разным уровнем потребления, как показано на Рис. 2, где оси могут представлять разные направления потребления, скажем, затраты на путешествия и затраты на предметы роскоши..Тогда группы слева соответствуют разным типам потребительской ориентации, а группы справа – разным уровням дохода. Я недавно предложил метод для автоматического выделения страт и делаю пробные расчеты, взял бы(ло) аспирантку в Лондоне, а она вышла замуж и уехала в Париж...

 

Итак, классификация какого-либо множества – это распределение объектов по классам таким образом, чтобы внутри классов объекты были похожи, а между классами – нет. Этим выявляется структура соответствующей области, а также связи между разными её аспектами. Роль эмпирической классификации в настоящее время огромна. А вычислительных разработок – кот наплакал.

 

Посмотрим, например, на подход кластер-анализа: кластеры формируются как относительно отделённые группы; например, мы видим два кластера на рис. 3 слева и один – справа.

 

Рис. 3: Одно- и двух модальное распределения, соответствующие ситуациям одного и двух кластеров, соответственно. На оси ординат отложены частоты (на самом деле, плотность) значений признака на оси абсцисс.

 

 

Разумно? Разумно; да и ничего другого пока и не предложено. Но когда группирование делается для определенной цели, этот критерий может оказаться непригодным, и в этом направлении сделано очень мало. Мне помогает в размышлениях вот такой пример – в старой российской армии рекрутирование шло в основном по росту, распределение которого соответствует правой части Рис.2: тех кто ниже 150 см, не брали; а среди новобранцев, тех кто выше 185 см, не брали во флот. То же с группировкой боксеров по весу (пропорционален силе удара).

 

В последнее время классификационное направление получает практическую реализацию в так называемых онтологиях – классификационных схемах хранения и обогащения знаний. Обычно онтология имеет форму таксономии, дополненной содержательными определениями и фактами о связи между таксонами. Такое впечатление, что понятие онтологии выходит на передний план в исследованиях по организации знания. Наиболее развитой является так называемая Gene Ontology (GO). Эта последняя уже начинает использоваться исследователями для анализа получаемых результатов. В последнее время большой импульс получило дело создания медицинской онтологии для практических приложений (SNOMED CT, USA).

 

В моей работе с S. Nascimento and L. Moniz Pereiro (New University, Lisbon, Portugal)  (2008-2011) проводилось отображение исследовательской активности на Классификацию Понятий Информатики, разработанную Всемирной ассоциацией вычислительных машин (Association for Computing Machinery, ACM CCS 1998).

 

2.3. Вклад Архимеда: Задание - написать эссе на эту тему


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: