Транзисторы со структурой металл-диэлектрик-полупроводник (МДП)

МДП-транзистор представляет собой полевой прибор, в котором металлический затвор изолирован от полупроводника тонким слоем диэлектрика. Пленочные полевые транзисторы (ППТ обычно относят к другому классу, поскольку в отличие от МДП-приборов они выполняются на изолирующей подложке. Кроме того, ППТ имеют значительно меньшую толщину активной области полупроводника.

МДП-транзисторы могут быть классифицированы по способу создания проводящего канала. В большинстве приборов используется проводящий инверсионный слой вблизи границы диэлектрик — полупроводник. Существуют, однако, приборы, называемые транзисторами с глубоким обеднением [20,21], основанные на эффекте. уменьшения проводимости канала, расположенного на некотором удалении от поверхности полупроводника. Подвижные носители в инверсионных ППТ- и МДП-транзисторах находятся в приповерхностной области полупроводника, а их концентрация зависит от электрического поля, создаваемого затвором. Это существенно отличает ППТ- и МДП-приборы от рассмотренных выше транзисторов с управляющим р-n-переходом.

Принцип работы МОП-транзистора инверсионного типа проиллюстрирован рис. 7. Для простоты полагается, что затвор отделен от полупроводника идеальным изолятором, а влияние поверхностных ловушек не учитывается. Распределение зарядов при нулевых напряжениях на электродах показано на рис. 5, а. Вблизи n+-областей, созданных диффузией для образования истока и стока, имеются области пространственного заряда, возникшие за счет внутренней разности потенциалов на n+-р переходах. Поскольку в р-области электроны практически отсутствуют, сопротивление-исток — сток весьма велико и соответствует сопротивлению двух встречно включенных диодов при нулевом смещении.

 


 

 

Если к затвору приложено положительное напряжение (рис. 7,б), вблизи поверхности происходит инверсия типа проводимости, так что в этой области концентрация электронов становится достаточно высокой и сопротивление сток - исток резко уменьшается.

При подаче положительного напряжения на сток (рис. 7, в) электроны начинают двигаться от истока к стоку по инверсионному слою. За счет падения напряжения вдоль канала нормальная составляющая поля затвора и соответственно концентрация электронов уменьшаются в направлении от истока к стоку. Толщина же обедненной области под инверсионным слоем в этом направлении увеличивается вследствие возрастания разности потенциалов между подложкой и каналом.

Когда напряжение на стоке превысит определенную величину (рис. 7,г), происходит перекрытие канала вблизи стока, и ток через прибор выходит на насыщение так же, как и в транзисторе с управляющим р-n-переходом. Эффекты укорочения канала и электростатической обратной связи, приводящие к тому, что дифференциальное сопротивление стока на практике остается конечным, будут рассмотрены в гл. 7.

Для приборов, в которых диэлектриком является окисный слой (МОП-транзисторы), существенную роль играет положительный заряд, присутствующий в окисле. Действие этого заряда эквивалентно наличию положительного напряжения на затворе, так что в случае полупроводника р-типа инверсионный слой существует уже при нулевом управляющем напряжении. Для n-полупроводника присутствие положительного пространственного заряда в окисле вызывает образование слоя с повышенной концентрацией электронов (n+), поэтому для создания инверсионного слоя напряжение на затворе должно превышать некоторую пороговую величину, достаточную для нейтрализации этого заряда. Таким образом, проводимость канала МОП-транзистора на подложке р-типа (n-канал) можно увеличивать или уменьшать в зависимости от полярности напряжения на затворе. В случае же подложки n-типа (р-канал) при VGS=0 канал отсутствует и для его создания необходимо приложить VGS<0, т. е. такие приборы могут работать только в режиме обогащения канала неосновными носителями (дырками). МОП-транзисторы с n-каналом принято называть транзисторами с обеднением, несмотря на то, что они могут работать также и в режиме обогащения канала неосновными носителями (электронами). Типичные стоковые характеристики обоих типов МОП-транзисторов приведены на рис. 8.

Выше предполагалось, что подложка легирована относительно слабо. О возрастанием степени легирования для образования инверсионного слоя необходимо прикладывать большее напряжение к затвору. Увеличивая концентрацию легирующей примеси в приборах на подложке р-типа, можно нейтрализовать действие положительного заряда в окисле и получить МОП-транзистор с индуцированным n-каналом.

Напряжение на затворе, при котором ток стока уменьшается до нуля, называется пороговым напряжением W, причем VT<0 для транзисторов как с р-, так и с n-каналом (см. рис. 8).

Минимальное напряжение сток — исток, необходимое для достижения насыщения, как и в случае ПТУП,

 

.

 

Приближенное выражение для тока стока в области до насыщения легко может быть получено при следующих упрощающих предположениях [9, 22]:

а) влияние поверхностных ловушек и контактные разности потенциалов не учитываются;

б) в диэлектрике присутствует фиксированный заряд с поверхностной плотностью Qss;

в) данный заряд на затворе наводит равный по величине и противоположный по знаку подвижный заряд вблизи поверхности полупроводника;

г) эффективная подвижность носителей в канале считается не зависящей от электрического поля в полупроводнике.

Для прибора, изображенного на рис. 9, ток ID, протекающий по каналу, создает падение напряжения V(y) по отношению к истоку, так что на расстоянии у от истока напряжение между затвором и каналом будет . Тогда заряд, наводимый в полупроводнике на элементе площади Zdy, будет

 

(1.4),


где  — удельная емкость диэлектрика; x0 — его толщина;  — диэлектрическая проницаемость окисла; — пороговое напряжение.

Если весь наведенный заряд подвижен, то

 

, (10)

 

где  — эффективная подвижность электронов в инверсионном слое.

Подставляя (25) в (10), находим

 

 (11)

 

Интегрируя (11) по y и учитывая, что V(L)=VDS, V(0) = 0, получаем

 

 (12)

 

Рис. 9. Схематическое изображение n-канального МДП-транзистора

 

Так как ID не зависит от у, то из (12) следует:


 (13)

 

Выражение (13) справедливо при условии

 (n-канал);

 (р-канал).

При  происходит перекрытие канала, при этом ток стока согласно (1-8) достигает наибольшего значения .

Будем считать, что ток стока в области насыщения остается постоянным и равным . Тогда из (1.8) следует, что передаточная характеристика в области насыщения имеет квадратичную форму:

 

 (14),

где

 

Величина KN является удобным коэффициентом для оценки качества работы прибора на низких частотах.

Крутизна передаточной характеристики при насыщении, как следует из (14), линейно зависит от VGS:

 

 (15)

 

Используя (14) и (15), KN можно выразить через  и :

 

 (16)


Для промышленных приборов эти параметры легко могут быть измерены или оценены из паспортных данных.

Экспериментально найдено, что для большинства МОП-приборов сопротивление сток — исток в режиме насыщения обратно пропорционально току стока. Поэтому максимальный коэффициент усиления по напряжению с помощью (16) может быть представлен в виде Таким образом, для получения большого усиления по напряжению необходимо уменьшать ток стока.

Эквивалентная схема МОП-транзистора на низких частотах имеет такой же вид, как и для ПТУП (рис. 5). Ток утечки затвора типичного МОП-прибора составляет»10-15 А, т. е. на несколько порядков меньше тока затвора ПТУП. В специальных конструкциях МОП-ПТ с охранными кольцами ток утечки затвора может быть уменьшен до 10-17 А, что делает такие транзисторы идеальными приборами для электрометрических измерений.

Упрощенная высокочастотная эквивалентная схема МОП-ПТ (рис. 10) отличается от соответствующей схемы ПТУП (рис. 6) добавлением емкостей Сbd и Cbs n+-р-переходов подложка сток и подложка — исток и последовательного сопротивления Rd- Кроме того, в схему включен конденсатор Cgb, учитывающий емкость вывода затвора и емкость, обусловленную влиянием напряжения затвора на заряд обедненной области подложки. В режиме инверсии Cgb обычно мала, однако при запертом транзисторе ее величина может составлять значительную часть общей входной емкости.

Сопротивление Rd может иметь заметную величину для приборов со встроенным каналом. В таких транзисторах для уменьшения емкости затвор—сток, затвор размещается так, чтобы он не перекрывался со стоком. Вследствие этого проводимость небольшой части канала вблизи стока не модулируется напряжением на затворе, что приводит к появлению последовательного сопротивления стока порядка нескольких сотен Ом. Очевидно, что в приборах с индуцированным каналом затвор должен перекрываться с истоком и стоком, так как немодулируемая часть канала представляла бы собой разрыв цепи.

В заключение данного раздела отметим некоторые особенности схемных применений разных типов МОП-транзисторов.

Поскольку в приборах со встроенным каналом длина затвора обычно меньше расстояния сток—исток, они обладают лучшими высокочастотными свойствами из-за меньшей величины входной емкости. Другое достоинство транзисторов этого типа — возможность получения равенства потенциалов входа и выхода в схеме истокового повторителя.

Существенным преимуществом приборов с индуцированным каналом является простота построения на их основе усилителей напряжения, а также логических и запоминающих схем с гальваническими связями.

 

Рис. 10. Упрощенная высокочастотная эквивалентная схема МОП-ПТ

 






Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: