Кинематические диаграммы

Структурный и кинематический анализ главного механизма

 

Выходные данные согласно заданию к курсовому проекту.

1. Схема двухпоршневого V - образного насоса (рис. 1.1)

2. Угловая скорость кривошипа , с-1 16

3. Погонная единица массы , кг/м 19

4. Коэффициент () 6,2

5. Коэффициент (), Н/м 5000

6. Угол  100

7. Длина кривошипа , мм 140

8. Длина шатуна , мм 560

9. Неравномерность хода  1/5

 

Рис. 1.1. Кинематическая схема механизма

 

Структурный анализ механизма

 

Механизм двухпоршневого горизонтального насоса состоит из 6 звеньев:

1 – кривошип ОА;

2, 3 – шатуны АB и AE;

4, 5 – ползуны (поршни) B и E;

6 – стойка.

Звенья механизма образуют 7 кинематических пар, из которых 5 вращательных и 2 поступательные.

Согласно формуле Чебышева степень свободы определиться как

 

 

где  - количество звеньев, ;

 - количество кинематических пар  класса, ;

 - количество пар  класса, .

 

 

Таким образом, механизм имеет одну степень свободы.

На рис. 1 изображена структурная схема механизма с разбиением на группы Асура и начальный механизм.

Структурная схема наглядно показывает, что механизм состоит из начального механизма 1 класса (стойка 6 и кривошип 1) и двух групп Асура (шатун 2 и ползун 4, шатун 3 и ползун 5).

 

Рис. 1.2 Структурная схема механизма


Структурная формула механизма:

 

 

Механизм относится к механизмам II класса по классификации И. И. Артоболевского.

 


Построение плана положений механизма

 

На листе формата А1 изображаем в масштабе план положений механизма. План строим в такой последовательности. Выбираем масштаб построения:

 

 

Выбираем произвольную точку О и из нее описываем окружность радиуса ОА. Начальное положение точки А (АО) выбираем согласно исходной схемы на продолжении направляющей ОE, при пересечении ее с вычерченной окружностью. От точки АО в направлении вращения кривошипа ОА разбиваем окружность на 12 равных частей, через каждые 30 градусов, проставляя при этом последовательно точки А1, А2 и т. д. Соединив полученные точки с центром окружности О, получим 12 положений кривошипа ОА. Точка E принадлежит шатуну АE и ползуну E и движется поступательно по направляющей ОE, поэтому для построения плана положений звена АE из каждой точки А раствором циркуля, равным длине шатуна АE в принятом масштабе, делаем засечки на направляющей, получая точки E1, E2 и т. д. План положений для звена AB строим аналогично.

 



Построение планов скоростей

 

Паны скоростей строятся по векторным уравнениям, которые составляются отдельно для каждой группы Асура в порядке присоединения их к ведущему звену.

Для ведущего звена ОА определяем величину скорости точки А:

 

 

Вектор  перпендикулярен радиусу, т. е. отрезку ОА, и направлен в сторону, определяемую направлением . Задаемся масштабом плана скоростей

 

,

 

и вычисляем отрезок , изображающий в выбранном масштабе вектор

 

 

Из произвольной точки Р, называемой полюсом плана скоростей, откладываем в указанном направлении отрезок  длиной 44,8 мм.

Составляем векторное уравнение, по которому определим скорость точки B, принадлежащей шатуну АB и ползуну B.


 

Скорость точки А известна, скорость относительного вращения точки B вокруг точки А перпендикулярна радиусу вращения отрезку АB и определяется по формуле

 

.

 

Скорость точки B направлена вдоль направляющей АB. Таким образом, получаем векторное уравнение, в котором два вектора известны по направлению, но неизвестны по величине, а третий вектор известен по направлению и по величине. Решая это векторное уравнение графическим способом, получим план скоростей для группы Асура, состоящей из звеньев 2 и 4. В соответствии с векторным уравнением через конец вектора  (точку а) проводи направление вектора , перпендикулярное , а через полюс  - направление вектора , параллельное АB. На пересечении этих направлений поставим точку B, а отрезки  и в масштабе будут представлять скорости  и . Для определения их величины достаточно измерить соответствующие отрезки и умножить их на масштабный коэффициент :

 

 

Пользуясь построенным планом скоростей, можно определить угловую скорость  по формуле:


 

Для определения направления  переносим вектор  в точку B механизма и рассматриваем движение этой точки относительно точки А по направлению скорости .

Аналогично строим план скоростей для группы Ассура (звенья 3 и 5) по уравнению:

 

 

и определяем угловую скорость шатуна AE:

 

 

Для определения направления  переносим вектор  в точку E и рассматриваем движение этой точки относительно точки A.

Изложенным выше способом строим планы скоростей для остальных 11 положений.

Результаты построения заносим в таблицу 1.1.

 

Таблица 1.1

Полож.

0

1

2

3

4

5

6

7

8

9

10

11

, град

0

30

60

90

120

150

180

210

240

270

300

330

[PA], мм

44,80

44,80

44,80

44,80

44,80

44,80

44,80

44,80

44,80

44,80

44,80

44,80

[AВ], мм

8,03

29,34

42,25

44,16

34,77

15,76

8,03

29,34

42,25

44,16

34,77

15,76

[РВ], мм

46,10

39,94

18,94

9,70

34,38

45,80

42,14

28,70

11,71

5,86

23,21

38,40

[AЕ], мм

44,80

39,10

22,94

0,00

22,94

39,10

44,80

39,10

22,34

0,00

22,94

39,10

[РЕ], мм

0,00

17,51

33,83

44,80

43,77

27,29

0,00

27,29

43,77

44,80

33,83

17,51

V, м/с

0,40

1,47

2,11

2,21

1,74

0,79

0,40

1,47

2,11

2,21

1,74

0,79

VВ, м/с

2,30

2,00

0,95

0,48

1,72

2,29

2,11

1,43

0,59

0,29

1,16

1,92

V, м/с

2,24

1,96

1,15

0,00

1,15

1,96

2,24

1,96

1,12

0,00

1,15

1,96

VЕ, м/с

0,00

0,88

1,69

2,24

2,19

1,36

0,00

1,36

2,19

2,24

1,69

0,88

ВА, с-1

0,72

2,62

3,77

3,94

3,10

1,41

0,72

2,62

3,77

3,94

3,10

1,41

ЕА, с-2

4,00

3,49

2,05

0,00

2,05

3,49

4,00

3,49

2,00

0,00

2,05

3,49



Построение планов ускорений

 

Определяем ускорение точки А. Так как кривошип по условию движется равномерно (угловое ускорение равно нулю), то ускорение точки А состоит только из нормальной составляющей, которая равна:

 

 

Вектор  направлен по радиусу к центру – от точки А к точке О. Задаемся масштабом плана ускорений  и вычисляем длину отрезка , изображающего в масштабе вектор

 

 

Из произвольной точки , называемой полюсом плана ускорений, в направлении вектора  откладываем отрезок .

Переходим к группе Ассура (звенья 2, 4).

Векторное ускорение для точки С группы имеет вид

 


Ускорение  слагается из нормальной и касательной составляющих

 

 

Ускорение  по величине равно

 

 

Вычисляем его величину и откладываем в масштабе от точки а плана ускорений в направлении от точки B к точке А механизма отрезок , равный по величине:

 

 

Ускорение  определяется по формуле:

 

 

Вектор  направлен вдоль направляющей ОB. Таким образом, получаем в векторном уравнении два неизвестных по величине, но известных по направлению вектора. Для их определения продолжим построение плана ускорений. Из точки  плана проведем направление вектора  перпендикулярно , а из точки  - параллельно направлению  (параллельно направляющей ОB). На пересечении этих направлений поставим точку b. Получаем отрезки  и , которые в масштабе изображают соответственно ускорение  и , т. е.


 и

 

Зная , определяем величину углового ускорения :

 

 

Направление углового ускорения определится после переноса вектора  в точку B механизма.

Для группы Ассура (звенья 3, 5) построение выполняется аналогично по векторному уравнению:

 

 

Строим план ускорений для положения 2.

 

 

Строим план ускорений для положения 7.

 

 

Результаты построения заносим в таблицу 1.2

 

Таблица 1.2

Пол.

м×с-2 м×с-2 м×с-2 с-2 м×с-2 м×с-2 м×с-2 м×с-2 с-2 м×с-2
2 25,41 10,12 27,31 18,08 58,14 2,35 31,27 31,36 55,84 22,4
7 12,25 25,58 28,31 45,68 15,41 6,83 17,48 18,77 31,22 35,63




Кинематические диаграммы

 

Диаграммы строятся для 12 положений механизма, которые были изображены на плане положений. Полный оборот кривошипа ОА соответствует одному кинематическому циклу

Рассмотрим построение диаграммы перемещения ползуна В . Проводим координатные оси  и . На оси  откладываем 12 равновеликих отрезков 0-1, 1-2 и т. д., соответствующих углу поворота кривошипа на 1/12 часть оборота (300). Через точки 1, 2, 3 и т. д. проводим ординаты и откладываем на них отрезки, равные координатам токи с -  в соответствующих положениях, отсчитываемых от крайнего нижнего положения точки В. Соединяя полученные точки плавной кривой линией, изображаем диаграмму .

При равномерном вращении кривошипа угол его поворота  пропорционален времени. Поэтому полученная диаграмма  является одновременно диаграммой зависимости перемещения ползуна от времени . Разница будет лишь в масштабах абсцисс.

Масштаб перемещения . Масштаб углов  равен

 

 

где  - отрезок (мм) по оси , изображающий полный оборот кривошипа ОА (2p).

Масштаб оси времени  диаграммы равен

 

,


где Т – период одного оборота кривошипа, который определяется по формуле:

 

 

Таким образом, для получения масштаба времени  достаточно разделить масштаб угла поворота  на величину угловой скорости кривошипа .

 

 

Построение кривых  и  выполняется способом графического дифференцирования (методом хорд). При этом масштабные коэффициенты диаграмм определяются по формулам:

 

;

 

где Н и Н1 – полюсные расстояния диаграмм соответственно, мм.

Далее стоит построить диаграмму угловых перемещений шатунов АС и BD. Угловое перемещение измеряют в градусах, отсчитывая его от направляющих ОЕ и ОВ.

Поворот против часовой стрелки, относительно оси направляющих ползунов принимаем за положительный. Масштабный коэффициент  определится по формуле:


 или

 

Выполнив графическое дифференцирование диаграммы углового перемещения, получим диаграмму угловой скорости. Масштабный коэффициент для данной диаграммы

 

 




Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: