Пусть интеграл
(
- непрерывна) не может быть непосредственно преобразован к виду табличного. Сделаем подстановку
, где
- функция, имеющая непрерывную производную. Тогда
,
и
. (3)
Формула (3) называется формулой замены переменной в неопределенном интеграле.
Как правильно выбрать подстановку? Это достигается практикой в интегрировании. Но можно установить ряд общих правил и некоторых приемов для частных случаев интегрирования.
Правило интегрирования способом подстановки состоит в следующем.
1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).
2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.
3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.
4. Производят замену под интегралом.
5. Находят полученный интеграл.
6. Производят обратную замену, т.е. переходят к старой переменной.
Проиллюстрируем правило примерами.
Пример 18. Найти
.
D Положим
, тогда
,
и

=
. Ñ
Пример 19. Найти
.
D Вычислим интеграл
, придерживаясь следующей формы записи:
=
.
Этот интеграл найдем подведением
под знак дифференциала.
=
. Ñ
Пример 20. Найти
(
).
D Применим подстановку Эйлера:
, где
- новая переменная.
, т.е.
, или
. Отсюда
, т.е.
.
Таким образом, имеем
. Заменяя
его выражением через x, окончательно находим интеграл, играющий важную роль в интегрировании иррациональных функций:
(
). Ñ
Студенты прозвали этот интеграл «длинным логарифмом».
Иногда вместо подстановки
лучше выполнять замену переменной вида
.
Пример 21. Найти
.
D Полагая t=ex , получаем
,
и
. Ñ
Пример 22. Найти
.
D Воспользуемся подстановкой
. Тогда
,
,
.
Следовательно,
. Ñ
В ряде случаев нахождение интеграла основывается на использовании методов непосредственного интегрирования и подведения функций под знак дифференциала одновременно (см. пример 12).
Проиллюстрируем этот комбинированный подход к вычислению интеграла, играющего важную роль при интегрировании тригонометрических функций.
Пример 23. Найти
.
D Имеем 
=
. Ñ
Итак,
.
Другой подход к вычислению этого интеграла:
.
Пример 24. Найти
.
Заметим, что удачный выбор подстановки обычно представляет трудности. Для их преодоления необходимо овладеть техникой дифференцирования и хорошо знать табличные интегралы.
Лекция 3.






