Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы А порядка n на n.
Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.
Идея очень проста. Обозначим обратную матрицу как X, то есть,
. Так как по определению обратной матрицы
, то

Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений

Решаем их любым способом и из найденных значений составляем обратную матрицу.
Разберем этот метод на примере.
Пример.
Дана матрица
. Найдите обратную матрицу.
Решение.
Примем
. Равенство
дает нам три системы линейных неоднородных алгебраических уравнений:

Не будем расписывать решение этих систем, при необходимости обращайтесь к разделу решение систем линейных алгебраических уравнений.
Из первой системы уравнений имеем
, из второй -
, из третьей -
. Следовательно, искомая обратная матрица имеет вид
. Рекомендуем сделать проверку, чтобы убедиться в правильности результата.
2. Задание: запрограммируйте метод Гаусса-Жордано для нахождения обратной матрицы и для решения системы уравнений.






