Установочный коэффициент

Таблица 4

вид сочленения

механизмы управления

  не учтены учтены
крыло-корпус 1.12-1.13 -
поворотное крыло-корпус - 1.15-1.25
оперение-корпус 1.20-1.45 -
цельноповоротное оперение-корпус 1.35-1.40 -
главное шасси-крыло 1.20-1.30 1.40-1.50
главное шасси-корпус 1.35-1.45 1.55-1.65
носовое шасси-корпус 1.25-1.65 1.50-1.90
ВРД-крыло (корпус) 1.03-1.05 -
элероны-крыло 1.15-1.35 -
простые закрылки-крыло 1.25-1.45 1.65-1.70
закрылки Фаулера-крыло 1.40-1.55 1.85-1.90

 

5. Определяются масса теплозащитного покрытия (ТЗП) или лимиты дополнительной массы, расходуемой на изготовление конструкции КРБ из теплостойких материалов. Расчёты начинается с анализа  схемы теплового нагружения КРБ (распределения удельных тепловых потоков) на участке манёвра возврата, который проводится с использованием тепловой модели КРБ и параметров траектории (угол атаки, число Маха, плотность атмосферы),. Затем поверхность КРБ аппроксимируется простейшими плоскими панелями. Предполагается, что в пределах панели поверхностная плотность ТЗП или её конструктивное исполнение остаются постоянными. Поверхностная плотность ТЗП определяется в зависимости от величины удельного теплового потока (температуры) по графикам приведенным на рис. 8.

Для контроля масса ТЗП должна рассчитываться и по суммарному тепловому потоку, подведенному к расчетной точке за время полета. Выбор критерия расчета массы ТЗП проводится на основе предположения о том, что удельный тепловой поток или суммарное количество подведенного тепла зависит главным образом от параметров траектории и варианта исполнения ТЗП. При крутых траекториях входа, критичными являются предельная величина и интенсивность нарастания теплового потока, влияющая на термические напряжения в конструкции.

Для пологих траекторий планирующих гиперзвуковых ЛА, реализующих, режим квазистационарного планирования, определяющим становится суммарное количество подведенного тепла и эффекты, связанные с продолжительностью воздействия высоких температур на конструкцию ЛА, а также прогревом ТЗП и переизлучением тепла внутрь, приводящим к снижению прочности силовых элементов конструкции. Одним из вариантов исполнения аэродинамических поверхностей является применение теплопоглощающей или «горячей» конструкции, предусматривающей изготовление обшивки и силовых элементов конструкции из термостойких материалов и нанесение ТЗП только на отдельные, наиболее теплонапряженные участки поверхности, преимущественно передние кромки.

Основное отличие методики расчета теплозащиты при использовании «горячей» конструкции заключается в том, что определение поверхностной плотности ТЗП заменяется вычислением (например, с помощью статистических или графических зависимостей типа представленных на рис.8 и 9) поправочных коэффициентов в весовых формулах, полученных для расчета “холодных” конструкций. Эти коэффициенты учитывают увеличение массы агрегата в результате применения жаропрочных и, как правило, более тяжелых конструкционных материалов, а также изменение их свойств при нагреве.

В общем случае при расчете “горячей” конструкции приходится учитывать продолжительность воздействия тепловых потоков. Заметим, что на прогрев толстостенных силовых элементов затрачивается определенное время, в течении которого конструкция может сохранять свою прочность без применения специальных мер для ее теплозащиты. Поэтому, при использовании КРБ со скоростями разделения менее 2100-2000 м/с и незначительным временем воздействия экстремальных тепловых потоков (не более 60-100с), интерес могут представлять и теплопоглощающие конструкции, аккумулирующие тепло в период максимального нагрева.

В целом, как показывает сравнение массовых сводок конструкции орбитального корабля и КРБ, относительный вклад ТЗП у последнего уменьшается в 4-4.5 раза (с 12.5-14.5 % до 3.0-3.5%), что до некоторой степени компенсирует влияние погрешностей расчета системы теплозащиты по приближенной методике на точность расчета суммарной массы системы спасения.

Рис.8  Зависимости поверхностных плотностей «горячей» конструкции и теплозащиты для «холодной» конструкции от величины удельного теплового потока

 

6. Рассчитывается масса шасси. При расчете весь агрегат подразделяется на следующие основные элементы: амортизационные стойки, оси или тележки, колеса и створки.

Суммарная масса главных опор шасси рассчитывается по формулам Шейнина:

,                                                              (21)

где  - коэффициент, учитывающий влияние посадочной массы  и определяемый как

;                                                               (22)

 - расчетная посадочная масса ();

 - коэффициент, учитывающий весовую эффективность шасси в зависимости от числа стоек () и имеющий следующие значения: =2 =1.0, =3 =1.1, =4 =1.15;

 - коэффициент, учитывающий свойства применяемых материалов (исходный материал – сталь 30ХГСНА =1.0).

 

Рис.9  Влияние установившейся температуры на изменение индекса массы конструкции и зависимость изменения температуры внутренней стенки от продолжительности воздействия теплового потока

 

Если часть конструкции предполагается изготовить из более прочного материала, доля которого в суммарной массе равна , то коэффициент определяется как

.                                    (23)

Масса стойки и тележки рассчитывается по следующим формулам

 

;                                                         (24)

,                                                                 (25)

 

где  - коэффициент, зависящий от схемы главных стоек шасси (табл.5).

- коэффициент весового совершенства (для изделия первого поколения =1.00; для второго и третьего 0.97 и 0.94 соответственно);

- коэффициент распределения нагрузки на стойку шасси

;

где - величина относительной нагрузки на носовую стойку шасси ();

- габаритная высота стойки без усадки амортизатора (расстояние от оси вращения колеса до оси поворота стойки);

 - диаметр колеса;

 - показатель степени, учитывающий нелинейную зависимость между длиной стойки и ее массой при >2.0 .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: