Изготовление полупроводниковых интегральных микросхем

 

Наибольшее распространение получили ИС, у которых все эле­менты и межэлементные соединения выполнены в объеме и на по­верхности полупроводника. Их называют полупроводниковыми.

Для изготовления полупроводниковых микросхем используют кремниевые монокристаллические пластины диаметром не менее 30 — 60 мм и толщиной 0,25 — 0,4 мм. Элементы микросхемы — бипо­лярные и полевые транзисторы, диоды, резисторы и конденсаторы — формируют в полупроводниковой пластине методами, известными из технологии дискретных полупроводниковых приборов (селективная диффузия, эпитаксия и др.). Межсоединения выполняют напы­лением узких проводящих дорожек алюминия на окисленную (т. е. электрически изолированную) поверхность кремния, имеющую окна в пленке окисла в тех местах, где должен осуществляться контакт дорожек с кремнием (в области эмиттера, базы, коллектора тран­зистора и т. д.). Для соединения элементов микросхемы с ее выво­дами на проводящих дорожках создаются расширенные участки —контактные площадки. Методом напыления иногда изготавливают также резисторы и конденсаторы.

Изготовление полупроводниковых микросхем осуществляют групповым методом, при котором на одной пластине 1 одновременно создают большое число (до 300 — 500) одинаковых функциональных структур (наборов элементов и межсоединений).

Одновременной обработке подвергается до 20 пластин. После вы­полнения всех операций по формированию элементов и межсоеди­нений пластину разрезают на отдельные платы 2, называемые кри­сталлами. Каждый кристалл содержит одну функциональную струк­туру. Его закрепляют на основании корпуса 3, контактные площадки соединяют с выводами микросхемы с помощью тонких проводничков, затем на основание надевают крышку корпуса 4 и корпус герметизируют, чем обеспечивается защита кристалла от воздействий окружающей среды.

Биполярные транзисторы. Структура транзистора, изолирован­ного электронно-дырочным переходом. Элек­трод коллектора К расположен в интегральных транзисто­рах на верхней поверхности кристалла, там же находятся элек­троды эмиттера Э и базы Б. Чтобы в этих условиях обеспечить низкоомный путь для коллекторного тока к электроду коллектора K, под n-областью коллектора создают скрытый слой n+, обладаю­щий повышенной проводимостью. Изолирующий переход образуется вдоль линии, разделяющей «-область коллектора и «+-область его скрытого слоя от р+-областей и р-области тела кристалла.

Транзисторы полупроводниковых микросхем могут иметь несколько отдельных эмиттеров при одной базе и одном коллекторе. Такие транзисторы называются много эмиттерными. Если в полупроводниковой микросхеме применяют диэлектриче­скую изоляцию элементов, то транзисторы имеют такую же двух­ переходную структуру, как и их дискретные аналоги.

Значения параметров интегрального биполярного транзистора определяются, как обычно, концентрационным профилем структуры, площадью переходов, электрофизическими параметрами материала.

Максимальный коллекторный ток может достигать 50 мА, коэффи­циент передачи тока базы от 20 до 50, обратные токи переходов менее 10 нА, максимальное коллекторное напряжение до 40 В, предельная рабочая частота до 1000 МГц. Освоены способы изготов­ления транзисторных структур имеющих коэффициент передачи тока базы до нескольких тысяч.

Полупроводниковые диоды. Для упрощения технологического цикла диоды изготавливают на основе транзисторных структур. Для быстродействующих диодов используют эмиттерный переход при соединенном с базой коллекторе. Для диодов, которые должны иметь большое пробивное напряжение, используют коллек­торный переход, а эмиттер соединяют с базой. Во вто­ром случае скорость переключения получается в десятки раз ниже из-за большего значения неравновесного заряда, накапливающегося не только в области базы, но и в области коллектора, а также из-за большей емкости перехода.

МДП-транзисторы. Эти приборы не нужно специально изолиро­вать от тела кристалла, так как у них область «сток — канал — исток» уже изолирована от тела кристалла электронно-дырочным переходом, образующимся вдоль линии, разделяющей р-область тела кристалла от л+-области истока, л-области канала и л+-области стока, и этот переход имеет обратное смещение в рабочем режиме. Площадь, занимаемая на подложке МДП-структурой оказывается при этом в сотни раз меньше, чем у биполярных струк­тур, что позволяет получить значительно большую плотность разме­щения элементов на подложке.

Интегральные МДП-транзисторы имеют следующие значения параметров: ток стока до 10 мА, напряжение стока до 30 В, вход­ное сопротивление — десятки МОм, предельная частота — сотни МГц. Таким образом, интегральные МДП-транзисторы являются сравни­тельно низкочастотными элементами, что обусловлено большими межэлектродными емкостями.

Конденсаторы. В полупроводниковых микросхемах применяют в основном р—n-конденсаторы, в качестве которых используют кол­лекторный переход 1 транзисторной структуры (рис. 1.8). Эмиттерную область в данном случае не формируют. Изолирующий р—n-пе­реход 2 отделяет р—n-конденсатор от тела кристалла. Выводами конденсатора являются алюминиевые электроды 3, 4. Конденсаторы, один вывод которых должен быть соединен с телом кристалла, могут выполняться на основе изолирующего перехода.

Емкость р—n-конденсатора определяется площадью перехода и обычно не превышает 100 пФ. Добротность низкая — не более 10, отклонение от номинала большое — до 30%, температурный коэф­фициент емкости до 10~3 град-1.

Резисторы. Для формирования в полупроводниковой пластине области, обладающей требуемым электрическим сопротивлением, обычно используют базовый слой транзисторной структуры и, иногда, эмиттерный или коллекторный слои. Такие резисторы на­зываются диффузионными. Алюминиевые межсоединения 1 имеют контакт с резистивным элементом 2 через окна в изолирующей плен­ке двуокиси кремния. Электронно-дырочный переход 3 изолирует резистивный элемент от тела кристалла.

Поскольку такие параметры диффузионных слоев, как толщи­на, концентрация и распределение примеси, задаются требованиями к транзисторным структурам, необходимое сопротивление резистивного элемента может быть получено лишь путем выбора слоя и его ширины и длины. Эмиттерный слой, имеющий более высокую кон­центрацию примесей, используют для получения резисторов с малым сопротивлением (от 2 до 30 Ом), а базовый слой — с большим со­противлением (от 100 Ом до 20 кОм). Отклонение от номинала достигает 20%, предельная частота — до 100 МГц, максимальное рабочее напряжение 5 и 20 В соответственно и температурный ко­эффициент 1-10-4 град-1 и 1-10-3 град-1, соответственно.

В полупроводниковых микросхемах обычно применяют диффу­зионные резисторы, но если требуемый номинал сопротивления не может быть с их помощью реализован, то в качестве резистивного элемента используют дорожки из пленки высокоомного металла на­пыленные, как и межсоединения, на изолирующую пленку двуокиси кремния, покрывающую поверхность кристалла.


 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: