Эволюция цветного зрения и видообразование

 

Зрение у цихлид играет важную роль при выборе партнера: самцы каждого вида имеют свой особый наряд, а самки превосходно разбираются в нюансах их окраски. Зрение может быть специально настроено на спектральные характеристики брачного наряда: например, если самцы у данного вида синие, то и глаза наиболее чувствительны именно к синим оттенкам. Или, может быть, причинная связь направлена в обратную сторону: если глаза у данного вида лучше всего различают оттенки синего (например, потому, что это оптимально для поиска пропитания), то и самцам выгодно нарядиться в костюмчик этих оттенков, чтобы самки скорее их замечали. Так или иначе, то обстоятельство, что один и тот же признак – характеристики цветного зрения – тесно связан и с экологическими (пищевыми) адаптациями, и с выбором брачного партнера (а значит, и с презиготической изоляцией), открывает редкие возможности для видообразования (Terai et al., 2006).

Мы уже говорили об эволюции цветного зрения в главе 5. Доступный нам мир красок определяется разнообразием опсинов – светочувствительных белков‑колбочек. Чтобы приобрести способность воспринимать новые оттенки, не нужно даже менять что‑то в мозге – достаточно добавить в сетчатку новый опсин. На примере опсинов удобно изучать эволюцию, поскольку в данном случае имеет место однозначное соответствие между генами и фенотипическими признаками (особенностями цветового восприятия).

Исследователи из США, Австралии и Швейцарии изучили опсины у 54 видов цихлид из озера Малави и 11 видов из озера Виктория (Hofmann et al., 2009). У цихлид есть один ген «черно‑белого» опсина‑палочки (Rh1) и целых шесть классов «цветных» опсинов‑колбочек: SWS1 (ультрафиолетовый), SWS2B (фиолетовый), SWS2A (синий), Rh2B (сине‑зеленый), Rh2A (зеленый), LWS (красный). Наше унаследованное от обезьян трихроматическое зрение, вероятно, позволяет нам видеть лишь бледную тень того богатства красок, которое доступно цихлидам с их гексахроматическим зрением (впрочем, новейшее исследование по различению цветов у гексахроматических раков‑богомолов не подтверждает этой «радужной» гипотезы (Thoen et al., 2014)). У цихлид сетчатка устроена сложнее, чем у млекопитающих. Колбочки делятся на «простые» и «двойные». В простых колбочках экспрессируются коротковолновые гены SWS, в двойных – длинноволновые Rh2 и LWS.

Как выяснилось, разные виды цихлид, в том числе и близкородственные, сильно различаются по активности шести опсиновых генов. В озере Малави, где вода прозрачная, цихлиды используют все шесть генов, хотя и в разной степени. Малавийские виды распадаются на три группы, сетчатка которых наиболее чувствительна к коротким, средним и длинным световым волнам. В озере Виктория, где вода мутная, цихлиды почти не используют гены ультрафиолетового и сине‑зеленого опсинов. Их сетчатка наиболее чувствительна к длинноволновому свету, который лучше проходит сквозь мутную воду. Напомним, что ультрафиолетовый опсин является самым коротковолновым из опсинов простых колбочек, а сине‑зеленый – самый коротковолновый из опсинов двойных колбочек.

Эти различия между озерами, по‑видимому, отражаются и на окраске рыб: у рыб из Малави чаще встречаются синие и фиолетовые тона, у рыб из Виктории – красные и желтые.

Авторы сопоставили активность опсиновых генов с экологическими характеристиками рыб, а именно с питанием и типом местообитания. Оказалось, что только у одного гена (ультрафиолетового) активность тесно связана с типом питания. Среди рыб озера Малави наибольшая активность ультрафиолетового гена характерна для видов, питающихся планктоном или водорослями, наименьшая – для хищников. Экспериментально было показано, что способность воспринимать свет в ультрафиолетовом диапазоне повышает эффективность питания у рыб‑планктофагов. Среди цихлид озера Виктория тоже встречаются и планктофаги, и фитофаги, и хищники, однако ультрафиолетовый ген ни у кого из них не работает – ни у планктофагов, ни у хищников, потому что мутная вода Виктории непрозрачна для ультрафиолета.

В озере Виктория, как выяснилось, спектр активности опсиновых генов связан с мутностью воды в конкретных местообитаниях, а также с глубиной, на которой живут представители данного вида. Чем мутнее вода и чем глубже обитают рыбы, тем слабее у них работает фиолетовый опсиновый ген, самый коротковолновый после ультрафиолетового.

Авторы также изучили межвидовые различия в аминокислотных последовательностях опсинов, влияющие на их чувствительность к волнам разной длины. В озере Малави самым вариабельным оказался ультрафиолетовый опсин, в Виктории – красный. Выявленные различия меняют оптимум восприятия красного опсина на 5–15 нм. У видов, обитающих на больших глубинах, где доступная цветовая гамма сильно смещена в длинноволновую сторону, туда же смещена и чувствительность красного опсина.

Таким образом, эволюция цветового восприятия у цихлид шла двумя путями: за счет изменения активности опсиновых генов и за счет изменения их кодирующих участков. Первым путем достигалась тонкая подстройка восприятия под особенности среды и образа жизни. Второй способ помогал менять границы воспринимаемого спектра – именно поэтому изменение аминокислотных последовательностей происходило преимущественно у двух «крайних» опсинов, ультрафиолетового и красного. Ученые рассчитали, учитывая различные экологические характеристики озер, что в прозрачном озере Малави на эволюцию цветового зрения сильнее влиял тип питания, в Виктории – спектральные характеристики доступного рыбам света, зависящие от мутности воды и глубины.

Столь высокое разнообразие цветового восприятия в пределах одной группы родственных видов – случай уникальный, не имеющий аналогов у позвоночных. Самое удивительное, что все эти различия развились быстро: озеру Малави 1–2 млн лет, Виктории – не более 120 тыс. лет. Обнаруженные различия в активности опсиновых генов смещают оптимум цветового восприятия очень сильно – до 100 нм. Разные виды цихлид действительно видят мир в разных красках. Это влияет как на их поведение, так и на эволюцию других признаков – прежде всего их собственной окраски. Африканские цихлиды – одна из самых разнообразных по окраске групп пресноводных рыб (неслучайно их так любят аквариумисты). Теперь мы узнали, что и цветовое зрение у них тоже удивительно разнообразно.

Многие факты говорят о том, что видообразование у цихлид в озере Виктория происходит под действием так называемого сенсорного смещения или сенсорного драйва (Seehausen et al., 2008). Так называют влияние особенностей органов чувств на направленность полового отбора. Например, если данный вид лучше всего видит красные объекты, самцам выгодно быть красными, чтобы привлекать внимание самок. Им выгодно также красоваться перед самками в таких местах (на такой глубине), где их краснота смотрится наиболее эффектно, более заметна для самок. Если интенсивность окраски у самца отражает его здоровье и качество генов, т. е. является индикатором приспособленности (а это обычно так и бывает), то самкам выгодно научиться еще лучше различать оттенки красного. Самки с наилучшей способностью различать эти оттенки выберут лучших самцов и оставят больше потомства, причем их сыновья унаследуют «удачный» брачный наряд от отца, а дочери – пристрастие к таким нарядам от матери.

В результате эволюция под действием полового отбора может приобрести черты автокаталитического процесса: рост интенсивности окраски будет стимулировать рост избирательности самок, и наоборот. Это может завести вид очень далеко по пути развития яркого наряда и изощренной системы цветового восприятия. Вряд ли можно сомневаться, что практически все наблюдаемое у африканских цихлид буйство красок возникло под действием полового отбора, ведь для выживания вся эта пестрота не имеет существенного значения.

 

Эволюционный стартап у бабочек‑подражателей

 

Коллекция хорошо изученных случаев симпатрического видообразования быстро пополняется. Разные пары расходящихся симпатрических видов и даже целые их «букеты» застигнуты исследователями на разных стадиях расхождения. Наименее изученными остаются начальные этапы этого процесса, когда популяция еще остается единой, но внутри нее уже зарождается презиготическая изоляция между особями с разными признаками.

Как показало исследование, выполненное сотрудниками Гарвардского, Гавайского и Техасского университетов, именно такая ситуация наблюдается в наши дни у бабочек Helicomus cydno alithea, обитающих в западном Эквадоре (Chamberlain et al., 2009). Бабочки рода Heliconius защищены от хищников, во‑первых, своей ядовитостью, во‑вторых, яркой предупреждающей окраской. При этом у них широко распространена так называемая мюллеровская мимикрия – маскировка одних ядовитых видов под другие (другой вид мимикрии – бейтсовская, при которой неядовитые виды маскируются под ядовитые). Мюллеровская мимикрия ускоряет обучение хищников: «обжегшись» на одной из ядовитых бабочек, хищник уже не будет испытывать судьбу, нападая на другие похожие виды. На бабочках Heliconius было показано (в том числе при помощи экспериментов по переселению бабочек из одних частей ареала в другие), что приспособленность бабочек‑подражателей напрямую зависит от частоты встречаемости бабочек‑моделей: из всех подражателей самая высокая приспособленность у тех, кто маскируется под наиболее массовый вид «моделей» в данной местности.

Ранее были изучены две пары подражающих друг другу видов Heliconius cydno galanthus / H. sapho и H. pachinus / H. hewitsoni, обитающие по разные стороны водораздела в Коста‑Рике. То есть с каждой стороны водораздела поселились по два вида, по одной паре «модель – подражатель». Для первой пары характерны белые пятна на крыльях, для второй – желтые. Генетический анализ показал, что виды‑подражатели состоят в более близком родстве друг с другом, чем со своими моделями. В лабораторных условиях два вида подражателей способны скрещиваться и давать плодовитое гибридное потомство, хотя при наличии выбора они всегда предпочитают партнеров своего вида. Межвидовые скрещивания позволили установить, что цвет пятен на крыльях (белый или желтый) определяется двумя аллелями одного гена, причем белый аллель – доминантный, а желтый – рецессивный. Наследование происходит строго «по Менделю»: при скрещивании белых H. cydno galanthus с желтыми H. pachinus первое поколение гибридов оказывается белым, а во втором наблюдается расщепление 3:1 (три белых бабочки на одну желтую). Что это за ген, пока не установлено. Известно только его положение на хромосоме, а сам ген фигурирует в литературе под условным названием «локус К».

Виды‑подражатели H. cydno galanthus и H. pachinus – это «хорошо разошедшиеся» виды, в природе не скрещивающиеся и даже не симпатрические: они обитают в разных районах Коста‑Рики. Генетический анализ подтвердил, что их генофонды давно существуют в изоляции друг от друга.

Иная картина наблюдается в Эквадоре, где тоже есть два вида‑модели – белый и желтый – и два подражателя. Однако в данном случае оба подражателя относятся к одному и тому же виду (формально – даже к одному подвиду): H. cydno alithea. Обе модели и вид‑подражатель, подразделенный на желтую и белую формы, проживают на одной и той же территории.

Скрещивая бабочек между собой, исследователи убедились, что наследование признака «желтые или белые пятна на крыльях» у H. cydno alithea происходит так же, как у видов из Коста‑Рики, и отвечает за него тот же локус К. Затем авторы изучили предпочтения белых и желтых самцов H. cydno alithea при выборе самок. Оказалось, что желтые самцы предпочитают желтых самок. Белые самцы оказались неизбирательными: они активно ухаживают и за белыми, и за желтыми самками.

Сравнение полиморфных участков генома у белых и желтых бабочек показало, что предпочтение себе подобных, характерное для желтых самцов, не в состоянии заметно ослабить генетический обмен между формами с разным цветом крыльев. Несмотря на избирательность желтых самцов, желтые и белые бабочки H. cydno alithea фактически образуют единую популяцию. Внутри нее лишь едва наметилось разделение на две репродуктивно изолированные части. Эти части уже дивергировали экологически, т. е. разошлись по нишам (в данном случае – по «подражательным» нишам: они подражают разным видам‑моделям). Наметилось и репродуктивное разделение, но оно проявляется пока только в предпочтениях самцов одной из двух форм. Это разделение в будущем вполне может стать (а может и не стать, конечно) основой для полного разделения популяции на два вида. Но одних лишь предпочтений желтых самцов для этого мало. Популяция сможет разделиться на два вида, только если появятся дополнительные факторы, способствующие такому разделению.

Исследование показало, что репродуктивная изоляция может зародиться в популяции даже в том случае, если никакой явной выгоды эта изоляция никому не дает. Как мы знаем, важным стимулом для развития изолирующих механизмов является пониженная приспособленность гибридов по сравнению с чистыми родительскими формами. Снижение жизнеспособности у гибридов связано со смешиванием родительских адаптивных признаков. Но у бабочек H. cydno alithea при скрещивании желтых особей с белыми никакого смешивания не происходит, потому что адаптивный признак наследуется моногенно, с полным доминированием. Гибридный потомок получает не промежуточный бело‑желтый фенотип, который мог бы оказаться неадаптивным, а один из родительских фенотипов в чистом виде – либо белый, либо желтый. Нет оснований предполагать пониженную жизнеспособность потомства от «смешанных» браков по сравнению с потомством от браков «одноцветных».

Почему желтые самцы стали предпочитать желтых самок? Поскольку это предпочтение не дает никаких преимуществ, мы не можем объяснить его развитие действием отбора. Предпочтение сформировалось либо просто случайно, либо как побочный продукт каких‑то внутренних связей в организме или существовавших ранее биологических механизмов.

Что значит «случайно»? Например, некий ген, отвечающий за предпочтение желтых или белых самок, мог случайно оказаться на хромосоме очень близко к локусу К, и поэтому они наследуются сцепленно. Генетические эксперименты подтвердили, что окраска и избирательность действительно наследуются строго сцепленно, однако они не доказали, что эти два признака зависят от разных генов, а не от одного и того же локуса К. К тому же, как бы близко ни располагались друг к другу гены на хромосоме, их сцепленность иногда все‑таки должна нарушаться из‑за кроссинговера, а это не подтверждается фактами.

Не исключено, что локус К может одновременно влиять и на цвет крыльев, и на избирательность самцов. Это не так уж невероятно, особенно если учесть, что у бабочек одни и те же пигменты могут использоваться и для окрашивания крыльев, и как светофильтры в глазах.

Другая возможность состоит в том, что самец делает выбор «с оглядкой на себя»: он видит, какого цвета крылья у него самого, и выбирает таких же самок. В этом случае самец‑мутант с изменившимся цветом крыльев автоматически сразу начнет предпочитать самок с такой же мутацией. Но тогда остается непонятным, почему выбирают себе подобных только желтые самцы, а белые ухаживают за всеми самками без разбора.

Окончательного ответа на вопрос, почему желтые самцы предпочитают желтых самок, пока нет. Однако исследование показало, что отдельные «строительные блоки», из которых в дальнейшем может быть построен изолирующий барьер между видами, могут формироваться в недрах единой популяции даже в том случае, если никакого адаптивного преимущества подобная изоляция пока не дает. Это, конечно, никакое не «заглядывание вперед» и не «движение к заранее намеченной цели» – формированию двух новых видов. Скорее всего, это автоматическая реакция на генетические изменения в популяции, которая выражается в предпочтениях того или иного брачного партнера.

 

–––––


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: