Направленность эволюции колюшек зависит от наличия убежищ

Итак, около 10 тыс. лет назад трехиглая колюшка, исходно морская рыбка, стала осваивать пресные водоемы, образовавшиеся на месте растаявших ледников. Освоение пресных вод сопровождалось морфологическими изменениями, которые происходили независимо в разных популяциях. Одним из таких изменений является облегчение костяного панциря – уменьшение числа пластин, защищающих тело с боков. У морских колюшек пластин больше, чем у пресноводных. В основе этого эволюционного изменения лежат закрепленные отбором мутации в гене Ectodysplasin, который регулирует развитие эпителиальных структур. У людей мутации этого гена являются причиной наследственного заболевания – ангидротической эктодермальной дисплазии.

 

 

В ходе приспособления к жизни в пресных водоемах у многих популяций трехиглой колюшки уменьшилось число костных пластинок на боках.

 

Есть три основные гипотезы о причинах уменьшения числа пластин у колюшек при переходе к жизни в пресных водах. Согласно первой, все дело в большей «дороговизне» костной ткани в пресных водоемах по сравнению с морем. В озерах и реках, где живут колюшки, меньше кальция, чем в морской воде, поэтому для того, чтобы вырастить костяной панцирь, рыбкам приходится тратить больше калорий.

Вторая гипотеза винит во всем хищных пресноводных насекомых, таких как гладыши и личинки стрекоз. Показано, что шипы и броня колюшек защищают их от хищных рыб, повышая шансы схваченной рыбки вырваться из зубов хищника. Но против насекомых эти средства защиты бессильны: шестиногим хищникам даже удобнее хватать мальков за их колючки и костяные пластинки (со взрослой рыбкой насекомые не могут справиться). Экспериментально установлено, что хищные насекомые действительно могут избирательно выедать мальков с длинными колючками и тяжелой броней (Marchinko, 2009).

Третья гипотеза предполагает, что причина редукции брони – в разной доступности укрытий. Морские колюшки плавают в толще воды, где спрятаться абсолютно негде. Остается полагаться на броню. В пресных водоемах колюшки стали держаться ближе ко дну, где укрытий достаточно. Возможно, в этой ситуации для колюшек решающее значение приобрела маневренность и способность быстро юркнуть в укрытие. Эксперименты показали, что облегченная броня действительно улучшает маневренность и способность к «быстрому старту». Однако нужно еще доказать, что при наличии укрытий колюшки с облегченным панцирем действительно получают селективное преимущество, т. е. реже поедаются хищниками.

Недавно это удалось сделать биологам из Хельсинкского университета (Leinonen, 2011). Они сажали группы колюшек с полным и неполным набором костных пластин в большие аквариумы со щуками, причем в половине аквариумов были укрытия, где колюшки могли спрятаться от хищника. Спустя три месяца подсчитывалось число выживших рыбок.

Результаты подтвердили гипотезу о роли укрытий в эволюции костной брони. В аквариумах без укрытий число пластин положительно коррелировало с выживаемостью: чем меньше у рыбки пластин, тем больше были ее шансы погибнуть в зубах щуки. В аквариумах с укрытиями все было наоборот: здесь вероятность выживания росла с уменьшением числа пластин (что объясняется ростом маневренности). Впрочем, это не исключает и две другие возможные причины редукции панциря (недостаток кальция и хищные насекомые). Ведь у этих гипотез тоже есть экспериментальные подтверждения. Вполне возможно, что все три фактора действуют вместе, что объясняет очень быструю эволюцию этого признака в некоторых водоемах.

Исследование подтвердило два важных эмпирических обобщения, которые иногда называют даже «аксиомами» эволюционной биологии: 1) полезность признака зависит от контекста: один и тот же признак может быть полезным для одних популяций и вредным для других, живущих в иных условиях; 2) эволюция – это постоянный поиск компромиссов: например, колюшки не могут быть одновременно юркими и бронированными, поэтому приходится выбирать что‑то одно в зависимости от обстоятельств.

Завершая рассказ о колюшках, нельзя не упомянуть о примере обратимой эволюции, который эти рыбки продемонстрировали в озере Вашингтон на северо‑западе США. Лет 50 назад у тамошних колюшек было мало костных пластин. К настоящему времени число пластин значительно выросло: колюшки фактически вернулись к своему прежнему, «морскому» состоянию. Предполагаемая причина в том, что вода в озере за это время очистилась, а в прозрачной воде колюшкам труднее спрятаться от хищной форели. Поэтому тяжелая броня снова стала для них более выгодной, чем маневренность.

–––––

 

 

«Великий эволюционный эксперимент» в африканских озерах

 

Рыбы цихлиды больших африканских озер – превосходный объект для изучения симпатрического видообразования. Во‑первых, это пресноводная группа, а значит, они развиваются в относительно замкнутых (по сравнению с океаном, конечно) системах. Каждое озеро изначально было заселено небольшим числом рыб, которые стали быстро дивергировать, причем эволюция в каждом озере шла в значительной мере независимо. Как обычно бывает в подобных случаях, освоение сходных ниш вело к независимому появлению сходных жизненных форм. Во‑вторых, цихлиды эволюционируют в озерах с известной геологической историей, а это хорошая подсказка для определения стартовой точки эволюции. Озера имеют разный возраст, но все они относительно молоды. В‑третьих, цихлиды отлично выживают в лабораторных условиях и поэтому с ними возможны всякие эксперименты. Помимо этого, в каждом из великих африканских озер – Малави, Танганьика и Виктория – сосредоточены сотни эндемиков, для которых имеются надежно реконструированные генеалогии. Эндемичные виды цихлид образовались и в других озерах поменьше, и они тоже оказываются в фокусе научного интереса.

В природе разные виды цихлид обычно не скрещиваются между собой (собственно, поэтому они и считаются видами, а не разновидностями). Репродуктивная изоляция обеспечивается в основном брачными предпочтениями, т. е. это презиготическая изоляция. Одним из главных факторов, обеспечивших быстрое видообразование у цихлид, был половой отбор.

Для предотвращения гибридизации, как мы уже говорили, вполне достаточно брачных предпочтений. Поэтому дополнительные изолирующие механизмы цихлидам не требуются, и они могут не возникать очень долго. Генетическая несовместимость (постзиготическая изоляция) развивается пассивно, по модели Добжанского – Мёллера, и на это требуется много времени – несколько миллионов лет, иногда даже более 10 млн. Это вычислили, сопоставив эксперименты по межвидовой гибридизации с оценками времени расхождения видов по молекулярным часам с учетом геологической истории озер.

В аквариуме представители разных видов и даже родов африканских цихлид легко скрещиваются и дают плодовитое потомство. Эти эксперименты выявили важный факт. Оказалось, что чем больше прошло времени с момента расхождения скрещиваемых видов, тем больше у гибридного потомства появляется новых признаков, отсутствующих у родителей (Stelkens et al., 2009). Таких, например, как живописный нарост над головой цветорога (flowerhorn) – гибридной цихлиды, выведенной, правда, не биологами, а восточноазиатскими любителями красивых рыбок.

Стоит ли удивляться, что цихлиды стали излюбленным объектом для изучения адаптивной радиации – приспособления к разным экологическим нишам. «Великий эволюционный эксперимент Природы» – так именуют африканских цихлид исследователи (Barlow, 2000).

Изучение сводного массива данных по 46 африканским озерам позволило Кэтрин Вагнер с коллегами выявить факторы, значимые для эволюции цихлид (Wagner et al., 2012). Исследователи проделали кропотливую работу, сопоставив множество экологических, морфологических и поведенческих признаков с темпами эволюции цихлид в разных озерах. Темпы видообразования оценивались по числу эндемиков и оказались очень разными в разных озерах. По‑видимому, различия определялись какой‑то озерной спецификой. Но какой?

Оказалось, что на темпы видообразования влияет, во‑первых, возраст озера (чем старше, тем вероятнее появление эндемиков), во‑вторых, глубина озера (чем глубже, тем больше вероятность дивергенции), в‑третьих, различия в окраске у самок и самцов: если самцы и самки одинаково окрашены (что обычно свидетельствует о слабом половом отборе), то видообразование менее вероятно.

Что ж, выводы ожидаемые: для эволюции нужно время; разнообразие экологических обстановок способствует видообразованию; половой отбор является мощным фактором видообразования. Такой превосходный объект, как цихлиды, позволяет увидеть много, много больше. Например, можно попытаться расшифровать взаимосвязи между изменениями генотипа и фенотипа. Или выяснить, как происходит параллельная эволюция в разных линиях.

Первая из этих задач – архиважная для понимания механизмов эволюции, но пока прочитано не так уж много геномов цихлид. Главное, что обнаруживается при сравнении геномов рыб из одного озера – это высокое сходство ДНК у внешне различных рыб. В своей эволюционной истории они разошлись так недавно, что нейтральные различия в геноме не успели накопиться. А для поддержания презиготической изоляции достаточно небольшого числа поддержанных отбором мутаций (отвечающих за признаки окраски, брачного поведения, избирательности). В основе расхождения цихлид по трофическим нишам (типам питания) лежали изменения всего нескольких ключевых генов‑регуляторов, контролирующих развитие челюстей, причем эти гены находились под действием сильного разнонаправленного отбора (Albertson, Kocher, 2006). Еще один важный вывод: наибольшие различия в геноме относятся к регуляторным последовательностям, а не белок‑кодирующим. Быстрая адаптация шла за счет тонкой настройки регуляции развития (Santos, Salzburger, 2012).

Вторая тема – генетические механизмы параллельной эволюции. Марко Коломбо и его коллеги из Базельского университета и Национального музея естественных наук в Мадриде проанализировали это явление на примере одного из характерных фенотипов цихлид – рыб с толстыми губами (Colombo et al., 2012). Выбранный признак – толстые губы – встречается не только у африканских цихлид, но и у центральноамериканских. Африка с Америкой потеряли связь около 100 млн лет назад, поэтому можно исключить и наследование признака от общего предка, и случайное расселение носителей признака, а вместо этого сосредоточиться на собственно параллельной эволюции.

Как выяснилось, толстые мясистые губы у цихлид вместе с некоторыми другими экстерьерными признаками возникали при переходе на специфическую диету – беспозвоночных с твердыми панцирями. Какие гены изменились, чтобы сформировать мясистые губы? В поисках ответа исследователи выделили РНК из тканей губ у толстогубых и тонкогубых цихлид и насчитали около 140 генов, по активности которых тонкогубые отличаются от толстогубых. Затем из этого набора кандидатов было придирчиво выбрано шесть генов. Нужно было, чтобы гены были связаны функционально с морфогенезом тканей губ и чтобы количество РНК у тонкогубых и толстогубых особей различалось контрастно. Всю процедуру сравнения проделали по отдельности для африканского озера Танганьика и центральноамериканского озера Манагуа. Три гена из шести отличали толстогубых рыб от тонкогубых в обеих выборках и удовлетворяли выбранным критериям. Эти гены отвечают за образование рыхлой соединительной и жировой ткани. А раз нашлись сходные генетические различия, то авторы закономерно заключили, что параллельное появление полезного признака произошло из‑за изменения экспрессии именно этих сходных генов.

По‑видимому, существует не так уж много способов сформировать конкретный признак, поэтому, если отбор начнет его поддерживать в двух разных линиях, это с большой вероятностью приведет к изменениям в работе одних и тех же генов. В целом сейчас известно больше примеров, иллюстрирующих принцип «сходный признак – сходные гены», чем «сходный признак – разные гены». С многочисленными примерами проявления обоих принципов мы уже познакомились. Складывается впечатление, что первый из принципов чаще реализуется в небольших компактных группах, второй – у организмов, представляющих удаленные ветви эволюционного дерева.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: