В материалах различных контрольных работ и экзаменов очень часто встречаются задачи на трапецию, решение которых требует от учащихся знаний «непрограммных» свойств трапеции. (Программными считаются свойство средней линии трапеции, свойства диагоналей и углов равнобедренной трапеции.) Какими же замечательными свойствами обладает трапеция? Где и когда их изучать в школьном курсе геометрии?
После изучения свойства средней линии трапеции можно сформулировать и доказать свойство отрезка, соединяющего середины диагоналей трапеции. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
| MO – средняя линия треугольник ABC и равна . MQ – средняя линия треугольника ABD и равна . Тогда , следовательно, .
|
Отрабатывая основной прием решения задач на трапецию «провести две высоты», учащимся необходимо предложить задачу: «Пусть BT – высота равнобедренной трапеции ABCD с основаниями BC и AD.
,
. Найдите длины отрезков AT и TD».
| Решение задачи не вызывает у учащихся затруднения, главное усилие педагога должно быть направлено на отработку свойства высоты равнобедренной трапеции, проведенной из вершины тупого угла: высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований. |
Тема «Подобие фигур» очень благодатна для изучения свойств трапеции. Например, диагонали трапеции разбивают ее на четыре треугольника, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики. Назовем это утверждение с войством треугольников, на которые разбивается трапеция ее диагоналями. Причем первая часть утверждения доказывается очень легко через признак подобия треугольников по двум углам. Вторую часть можно предложить учащимся в виде задачи.
|
|
|
| Треугольники BOC и COD имеют общую высоту, если принять за их основания отрезки BO и OD. Тогда . Следовательно, .
|
Аналогично, треугольники BOC и АОВ имеют общую высоту, если принять за их основания отрезки CO и OA. Тогда
и
.
Из этих двух предложений следует, что
.
Было бы замечательно не останавливаться на сформулированном утверждении, а найти связь между площадями треугольников, на которые разбивается трапеция ее диагоналями, предложив учащимся решить задачу: «Пусть O – точка пересечения диагоналей трапеции ABCD с основаниями BC и AD. Известно, что площади треугольников BOC и AOD равны соответственно
и
. Найдите площадь трапеции».
Так как
. Отсюда
, из подобия треугольников BОC и AOD следует, что
.Следовательно,
. Тогда 
|
|
|
С использованием подобия доказывается и свойство отрезка, проходящего через точку пересечения диагоналей трапеции параллельно основаниям. Предлагаем учащимся решить задачу: «Пусть O – точка пересечения диагоналей трапеции ABCD с основаниями BC и AD.
,
. Найдите длину отрезка PK, проходящего через точку пересечения диагоналей трапеции параллельно основаниям. На какие отрезки делится PK точкой О».
| Из подобия треугольников AOD и BOC следует, что .
Из подобия треугольников AOP и ACB следует, что .
|
Отсюда
.
Аналогично, из подобия треугольников DOK и DBC, следует, что
. Отсюда
и
.
Добиваемся от учащихся осознания доказанного свойства: отрезок, параллельный основаниям трапеции, проходящий через точку пересечения диагоналей и соединяющий две точки на боковых сторонах, делится точкой пересечения диагоналей пополам. Его длина есть среднее гармоническое оснований трапеции.
Следующее с войство четырех точек: в трапеции точка пересечения диагоналей, точка пересечения продолжения боковых сторон, середины оснований трапеции лежат на одной линии.
| Треугольники BSC и ASD подобны и в каждом из них медианы ST и SG делят угол при вершине S на одинаковые части. Следовательно, точки S, T и G лежат на одной прямой. Точно так же на одной прямой расположены точки T, O и G. Это следует из подобия треугольников BOC и AOD. Значит, все четыре точки S, T, O и G лежат на одной прямой. |
Знакомя учащихся с подобием фигур (не треугольников), можно предложить найти длину отрезка разбивающего трапецию на две подобных.
| Если трапеции ALFD и LBCF подобны, то .
Отсюда .
|
Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.
После вывода формулы площади трапеции полезно доказать свойство отрезка, делящего трапецию на две равновеликие.
| Пусть площадь трапеции равна S.
h 1 и h 2 – части высоты, а х – длина искомого отрезка. Тогда
и
.
|
Составим систему

Решение системы
.
Таким образом, длина отрезка, делящего трапецию на две равновеликие, равна
(среднему квадратичному длин оснований).
Итак, для трапеции ABCD с основаниями AD и BC (
,
) доказали, что отрезок
1) MN, соединяющий середины боковых сторон трапеции, параллелен основаниям и равен их полусумме (среднему арифметическому чисел a и b);
2) PK, проходящий через точку пересечения диагоналей трапеции параллельно основаниям, равен
(среднему гармоническому чисел a и b);
3) LF, разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому чисел a и b,
;
4) EH, делящий трапецию на две равновеликие, имеет длину
(среднее квадратичное чисел a и b).
Чтобы учащиеся осознали связь между указанными отрезками, необходимо попросить построить их для данной трапеции. Без труда учащиеся построят среднюю линию трапеции и отрезок, проходящий через точку пересечения диагоналей трапеции параллельно основаниям. Где будет лежать третий и четвертый отрезок? Ответ на этот вопрос должен привести учащихся к открытию связи между средними величинами.
Признак и свойство вписанного и описанного четырехугольника должны быть конкретизированы для всех известных учащимся четырехугольников, в том числе и для трапеции.
| Свойство вписанной трапеции: трапеция может быть вписана в окружность в том и только в том случае, когда она равнобедренная. |
Свойства описанной трапеции. Около окружности можно описать трапецию тогда и только тогда, когда сумма длин оснований равна сумме длин боковых сторон.
| Полезно осознание следствий того, что в трапецию вписана окружность: 1. Высота описанной трапеции равна двум радиусам вписанной окружности. 2. Боковая сторона описанной трапеции видна из центра вписанной окружности под прямым углом. |
Первое очевидно. Для доказательства второго следствия необходимо установить, что угол COD прямой, что так же не составляет большого труда. Зато знание этого следствия позволяет при решении задач использовать прямоугольный треугольник.
|
|
|
Конкретизируем следствия для равнобедренной описанной трапеции:
| высота равнобедренной описанной равнобедренной трапеции есть среднее геометрическое оснований трапеции. .
|
Рассмотрим основные принципы методики изучения свойств трапеции.
Во-первых, это использование задачного подхода. Нет необходимости вводить в теоретический курс геометрии новые свойства трапеции. Эти свойства открываются и формулируются учащимися через решение задач (лучше систем задач). Важно, чтобы учитель знал, какие задачи должны быть поставлены и в какой момент учебного процесса. Кроме того, каждое свойство может быть ключевой задачей в системе задач.
Во-вторых, «спиральная» организация изучения свойств трапеции. К отдельным свойствам можно возвращаться несколько раз, тогда есть вероятность, что учащиеся их запомнят. Например, свойство четырех точек можно доказать при изучении подобия и потом с помощью векторов. Равновеликость треугольников, прилежащих к боковым сторонам трапеции, можно доказать, используя как свойство треугольников, имеющих равные высоты, проведенные к сторонам, лежащим на одной прямой, так и формулу
. Можно отрабатывать свойства прямоугольного треугольника на описанной трапеции, теорему синусов на вписанной трапеции и так далее.
Предложенное включение «непрограммных» свойств трапеции в содержание школьного курса геометрии, задачная технология их изучения, неоднократное обращение к свойствам трапеции при изучении других тем позволят учащимся более глубоко познать трапецию и обеспечат успешность решения задач на применение ее свойств.
. MQ – средняя линия треугольника ABD и равна
. Тогда
, следовательно,
.
. Следовательно,
.
.
Из подобия треугольников AOP и ACB следует, что
.
.
Отсюда
.
и
.
.






