Регуляция метаболизма у бактерии

Метаболизм микроорганизмов прежде всего регулируется факторами внешней среды. Так, кислород подавляет брожение; у денитрифицирующих бактерий нитратное дыхание может начаться лишь при недостатке кислорода; изменение рН в культурах Enterobacter и Clostridium влияет на природу образующихся продуктов брожения и прочее. Многообразие обменных процессов требует их хорошей координации. Только в этом случае клетка может приспосабливаться к меняющимся условиям внешней среды и оптимально согласовывать между собой различные метаболические процессы. Объектами такой оптимизации выступают ферменты.

Регуляция клеточного метаболизма происходит на двух уровнях — на уровне синтеза ферментов и на уровне изменения их активности. На обоих уровнях участвуют аллостерические белки, свойства которых изменяются при связывании со специфическими малыми молекулами-эффекторами, например АТФ, АМФ, ацетил-КоА, фосфоэнолпируватом, НАДН+ и др. • Существует два класса аллостерических белков: аллостерические ферменты и регуляторные аллостерические белки. Последние лишены каталитической активности и регулируют синтез определённых ферментов путём присоединения к бактериальной хромосоме вблизи соответствующих генов, активность которых находится под контролем этих белков. Связывание регуляторных аллостерических белков с молекулами-эффекторами приводит к изменению скорости синтеза мРНК, кодируемых этими генами (регуляция на уровне синтеза ферментов). Регуляция на уровне изменения активности свойственна, как правило, только ключевым ферментам клеточного метаболизма, которые обычно образуются вне зависимости от условий среды. • Согласование регуляторных механизмов отдельных стадий катаболизма углеводов (например, гликолиза, ЦТК, окислительного фосфорилирования) осуществляется через ключевые продукты. В данном случае соотношение АТФ и АДФ определяет не только скорость Как только возрастает потребление АТФ (уменьшается его концентрация), концентрация АДФ возрастает, и вслед за этим увеличивается скорость переноса электронов и окислительного фосфорилирования. Значит, поток электронов в дыхательной цепи должен усилиться, а это связано с возрастанием скорости гликолиза, обеспечивающего усиленное образование пирувата. Когда концентрация АТФ возвращается к своему исходному высокому уровню, перенос электронов замедляется. Замедляются ЦТК и гликолиз, поскольку АТФ действует как эффектор аллостерических белков — ингибитор ключевых ферментов гликолиза и окисления пирувата.



ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 12 

Перемещающиеся генетические элементы у бактерий

Мигрирующие генетические элементы — отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Транспозиция связана со способностью мигрирующих элементов кодировать специфический фермент рекомбинации — транспозазу. Вставочные (инсерционные) последовательности IS-элементы — простейший тип мигрирующих элементов; их величина не превышает 1500 пар оснований (в среднем 800-1400). IS-элементы самостоятельно не реплицируются и не кодируют распознаваемых фенотипических признаков. Содержащиеся в них гены обеспечивают только их перемещение из одного участка в другой. Основные функции IS-последовательностей — регуляция активности генов бактериальной клетки (могут инактивировать гены, в которые включились, или, встраиваясь в хромосому, проявлять эффект промотора, включающего либо выключающего транскрипцию соответствующих генов), индукция мутаций типа делеций или инверсий (при перемещении) и дупликаций.

Транспозоны (Tn-элементы) состоят из 2000-25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых IS-элемента. При включении в ДНК бактерий транспозоны вызывают дупликации, при выходе из определённого участка ДНК— делеций, при выходе и включении обратно с поворотом фрагмента на 180 градусов— инверсии. Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. Поскольку транспозоны содержат гены, определяющие фенотипически выраженные признаки (например, устойчивость к антибиотикам), то их легче обнаружить, чем IS-элементы.

Бактериофаги, как мигрирующие генетические элементы. В некоторых ситуациях факторами изменчивости могут быть умеренные, или дефектные, фаги, поскольку они могут встраиваться в хромосому (состояние профага) и выходить из неё, захватывая иногда и гены хромосомы клетки-хозяина.Например, u-бактериофаг сходен с IS-элементами и транспозонами, так как способен включаться практически в любой участок бактериальной хромосомы, привнося свой генетический материал и вызывая мутагенный эффект. Сохраняя все типичные свойства фага, р-бактериофаг можно рассматривать как гигантский транспозон.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: