Спонтанные и индуцированные мутации у бактерий

Спонтанные – это мутации, которые возникают самопроизвольно, без участия со стороны экспериментатора. Американский генетик М. Грин показал, что около 80% мутаций, которые были открыты как спонтанные, возникли в результате перемещения мобильных элементов.

  Индуцированны е – это те мутации, которые вызваны искусственно, с использованием различных факторов мутагенеза. Процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации – мутагенами. Мутагенные факторы подразделяются на: физические, химические, биологические.

По фенотипическим последствиям мутации подразделяют на прямые и обратные (или реверсии). Мутации, приводящие к утрате или изменению какой-то функции клетки, относятся к классу прямых, так как они вызывают появление у клеток другого фенотипа, который отличает их от бактерий дикого типа. Например, бактерии E. coli, способные в норме сбраживать лактозу (Lac+ -фенотип), могут утрачивать данный признак, и поэтому мутация Lac+ Lac–, будет считаться прямой. В результате обратной мутации у мутантного организма восстанавливается исходный (или дикий) фенотип: Lacъ– Lac+ – обратная мутация, или реверсия.

Обратные мутации бывают истинными (истинные реверсии) и вторичными. Об истинных обратных мутациях-когда измененный при первой мутации триплет нуклеотидов будет вновь восстановлен. Однако эффект первой мутации может быть компенсирован мутацией в другой части этого же или расположенного рядом гена. Такие мутации называют вторичными реверсиями.

Супрессорные мутации восстанавливают у мутантов только дикий фенотип, не восстанавливая первоначального состояния самого мутантного гена

Точечные мутации – мутации, затрагивающие только одну пару оснований и приводящие к замене одной пары оснований на другую. Например, пара А–Т может быть заменена Г–Ц или наоборот Мутации такого рода могут быть двух типов: • транзиции, в результате которых происходит замена пурина на другой пурин или же пиримидина на другой пиримидин (простая замена). • трансверсии, приводящие к замене пурина пиримидином, и наоборот (сложная замена), т. е. вместо пары А–Т появляется пара Т–А или Г–Ц.

миссенс-мутациями (мутациями с изменением смысла), в которых кодирующий триплет оснований после замены обеспечивает включение в белок уже другой аминокислоты. нонсенс-мутации (бессмысленные мутации), характеризующиеся тем, что кодирующий какую-либо аминокислоту триплет превращается в триплет, не кодирующий никакой аминокислоты, или стоп-кодон..

хромосомными. Дупликации – возникновение в данной нуклеотидной последовательности одного или, чаще, нескольких повторов. Делеции – утрата двух или нескольких пар оснований. Инверсии – изменение порядка нуклеотидов в ДНК на обратный по отношению к ориентации в штаммах дикого типа, возникающее обычно в результате рекомбинации с переворотом (flip-flop). Транслокации – перенос фрагмента ДНК в новое положение.

Мутанты, нуждающиеся в определенных аминокислотах, азотистых основаниях, ростовых факторах, называются ауксотрофными.

 

Механизмы репарации мутаций у бактерий

У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная.

Прямая репарация — наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов.

Примером этого процесса является фотореактивация. Наиболее распространённым химическими изменениями, вызванных ультрафиолетовым облучением, являются образование циклобутан-пиримидиновых димеров (CPD) и пиримидин-пиримидиновых фотопродуктов (6-4PP-тиминовых димеров), когда два соседних пиримидиновых оснований ковалентно связываются друг с другом. Для удаления индуцированных ультрафиолетом повреждений ДНК у многих микроорганизмов применяются ферменты — ДНК-фотолиазы, специфично связывающиеся с CPD (CPD-фотолиаза) или с 6-4PP (6-4PP-фотолиазы) и исправляющие эти повреждения. Эти ферменты и активируются под действием видимого света.

Эксцизионная репарация включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы по комплементарной цепи. Ферментативная система удаляет короткую однонитевую последовательность двунитевой ДНК, содержащей ошибочно спаренные или поврежденные основания, и замещает их путём синтеза последовательности, комплементарной оставшейся нити.

Эксцизионная репарация базируется на распознавании модифицированного основания различными гликозилазами, расщепляющими N-гликозидную связь этого основания с сахарофосфатным остовом молекулы ДНК. При этом существуют гликозилазы, специфически распознающие присутствие в ДНК определенных модифицированных оснований.

Другой тип эксцизионной репарации — эксцизионная репарация нуклеотидов, предназначенная для более крупных повреждений, таких как образование пиримидиновых димеров. У прокариот эксцизионная репарация нуклеотидов осуществляется системой белков Uvr. Три из этих белков — UvrA, UvrB и UvrC — образуют эндонуклеазу, известную как UvrABC-эндонуклеаза.

Пострепликативная репарация - тип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей повреждённые участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA. Это единственный тип репарации, не имеющий этапа узнавания повреждения.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: