Раздел I. Методологические основы расчёта элементов конструкций

                                          1. Основные понятия

Сопротивление материалов является одной из основополагаю­щих технических дисциплин, формирующих мышление инженера.

Инженерные конструкции в условиях эксплуатации подверга­ются внешним воздействиям и меняют формы и размеры, т.е. деформируются. При проектировании конструкций и сооружений приходится определять материал, конфигурацию и размеры элементов, способных оказать сопротивление внешним воздействиям. Главны­ми требованиями к конструкции выступают противоречащие друг другу надежность работы (способность выполнять заданные функ­ции, сохраняя свои эксплуатационные показатели в определенных пределах в течение требуемого промежутка времени) и экономич­ность. Разрешение этого противоречия является важнейшим эле­ментом научной методики, обусловливающей развитие механики де­формируемого твердого тела – науки о прочности (способности сопротивляться разрушению под действием внешних факторов), жесткости (способности сопротивляться изменению размеров и формы) и устойчивости (способности сохранять определенную на­чальную форму равновесия). Основываясь на выводах этой науки и имея собственную направленность – разработку моделей надежно­сти, сформировалась область знания с исторически закрепившим­ся названием «сопротивление материалов».

Для современного этапа развития технических наук характе­рен переход от расчетных методик к математическому моделирова­нию, что позволяет отразить функциональное назначение и усло­вия надежности конструкции, выбрать оптимальные параметры.

Под моделью в широком смысле понимают совокупность представлений, зависимостей, условий, ограничений, описывающих об­раз какого-либо объекта, процесса, явления. Она может иметь разные формы выражения. Наиболее часто используются математи­ческие модели в виде различного рода уравнений, ограничений. Учет влияния тех или иных факторов накладывает отпечаток на степень соответствия модели исходному объекту.

Модель прочностной надежности элемента конструкции вклю­чает четыре вспомогательные модели: материала, формы, нагружения, предельного состояния (разрушения), а также запасы проч­ности, вероятность разрушения.

В механике деформируемого твердого тела рассматриваются тела из абстрактного материала. Сплошное твердое деформируемое тело состоит из материальных точек (бесконечно малых элемен­тов), сплошь распределенных по объему тела и соединенных меж­ду собой податливыми связями. Внешние

 

силы вызывают в связях силы сопротивления, называемые внутренними силами, при этом меняются расстояния между точками. Отвлеченность от атомно-молекулярного строения позволяет классифицировать материалы только с точки зрения механического сопротивления и выявить общие законы этого сопротивления. Опыты с образцами металлов и других конструкционных материалов показали, что введение моде­ли сплошной однородной среды вполне оправдано. Свойство тел деформироваться под нагрузкой и затем, после устранения сил, восстанавливать свое первоначальное состояние называют упруго­стью. Если это свойство проявляется одинаково во всех направ­лениях, то тело называют изотропным. В дальнейшем будут рас­сматриваться и более сложные модели материала.

Основными моделями формы являются: брус, стержень, оболо­чка, пластин-ка, пространственное тело (массив).

Брус – тело, образованное плоской фигурой, движущейся по некоторой кривой таким образом, что центр тяжести фигуры сов­падает с кривой, а плоскость фигуры остается перпендикулярной к касательной, проведенной в соответствующей точке к данной кривой. Кривая является осью, а плоская фигура – поперечным сечением бруса. Сечение также может поворачиваться относитель­но оси (естественно закрученный брус). При плавном или скачко­образном изменении параметров плоской фигуры образуется брус переменного сечения.

Стержень – брус, у которого поперечные размеры малы по сравнению с продольными. В технике часто применяют тонкостен­ные стержни, у которых один размер сечения мал по отношению к другому и оба они малы по сравнению с длиной стержня.

Оболочка – тело, форма которого может быть образована движением прямого отрезка постоянной или переменной длины при условии, что середина его остается на некоторой направляющей поверхности и отрезок остается нормальным к этой поверхности. Направляющая поверхность называется срединной поверхностью оболочки, а длина прямого отрезка – толщиной оболочки в данной точке.

Пластинка – частный случай оболочки, когда срединной по­верхностью является плоскость.

Пространственное тело (массив) – модель формы элемента конструкции, размеры которого во всех направлениях соизмеримы.

Нагрузки, приложенные к телу, распределены по некоторым площадкам его поверхности или по объему. Для их представления используют модели: сосредоточенная сила, распределенные наг­рузки и объемные силы.

Если размеры нагруженной площадки малы по сравнению с длиной бруса, нагрузку представляют сосредоточенной силой, т.е. приложенной к математи-

 

 

ческой точке поверхности (обознача­ется F). Единица измерения силы в системе СИ – ньютон (Н).

Нагрузки, приложенные к участкам поверхности достаточно больших размеров по сравнению с длиной бруса, считают распределенными по поверхности, либо приводят к распределенным по линии.

Мерой поверхностного силового поля является интенсивность

где Δ F – равнодействующая нагрузки, приходящейся на весьма ма­лую площадку; Δ А – величина этой площадки. Размерность величи­ны p – Н/м2.

Величина, измеряемая силой, действующей перпендикулярно к поверхности и приходящейся на единицу поверхности, называется давлением. Единица измерения – паскаль (Па). 1 Па = 1 Н/м2.

Мерой нагрузки, распределенной по линии, является ее интенсивность q (размерность – Н/м). График, показывающий изменение величины q по длине бруса, называется эпюрой нагрузки.

Нагрузки, распределенные по объему тела (например, силы гравитации, инерции), называются объемными силами и характеризуются интенсивностью с размерностью Н/м3.

В ряде случаев нагрузки моделируются как моментные в виде сосредоточенных моментов (пар сил М) и моментов, распределен­ных по поверхности или по линии (размерности соответственно – Н·м, Н·м/м2, Н·м/м).

По длительности действия различают постоянные и временные нагрузки. Постоянные нагрузки действуют на протяжении всего периода существования конструкции, например, ее собственный вес. Временные нагрузки действуют в течение ограниченного про­межутка времени, например, снег. Сюда можно отнести и перемен­ное нагружение, изменяющееся во времени.

Действие нагрузки считается статическим, если ее величина или положение меняется со временем незначительно, так что мож­но пренебречь влиянием сил инерции. Для динамического действия нагрузки характерно быстрое изменение во времени ее величины и положения, что вызывает в элементах конструкции силы инерции, которыми нельзя пренебречь.

Модели нагружения должны отражать также воздействие полей и сред. Наиболее часто приходится учитывать воздействия температурного поля и коррозионных сред.

Модели предельного состояния представляют собой уравнения (условия), связывающие параметры механического сопротивления элемента конструкции в момент наступления такого состояния с параметрами, обеспечивающими прочность, жесткость. Эти условия часто называют условиями прочности, жесткости.

 

 

Дальнейшее абстрагирование деформируемого тела связано с принятием для него расчетной схемы  (вместо стержня изображает­ся его ось, вместо оболочки – ее срединная поверхность; нагруз­ка прикладывается к оси или срединной поверхности элемента и т.д.).

Тип конструктивной опоры устанавливается по ее характери­стикам – кинематической (с точки зрения перемещений, допускае­мых и задерживаемых опорными связями) и статической (с точки зрения силового сопротивления). Наиболее распространены шар­нирные и защемляющие опоры.

Шарнирные опоры делятся на цилиндрические и шаровые, каж­дые из которых могут быть неподвижными и подвижными. Защемляющим опорам в реальности соответствует глухое присоединение элементов конструкции к опорному телу (например, с помощью сварки), заделка элемента в тело опоры и др. В приведенной ниже таблице даны расчетные схемы опор, применяемых при плос­ком равновесии сил.

В таблицу включены жесткие (недеформирующиеся) опоры. Ша­рнирные и защемляющие опоры могут быть податливыми, т.е. допу­скающими определенные перемещения от передаваемых на них сил. В условных обозначениях стерженьки заменяются пружинками.

 

Тип опоры Кинематическая характеристика Статическая  характеристика Условное  обозначение
Цилиндрическая не­подвижная Допускает вращение вокруг од­ной оси и задер­живает линейные перемещения связанного с ней элемента Не создает реакции в виде момента, а только в виде силы R в плоскости системы с неизвестным заранее направлением
Цилиндрическая подвижная Отличается от предыдущей нали­чием дополни­тельной степени свободы Ре­акция R имеет опре­деленное направле­ние
Плоская защемляющая неподвижная Задерживает все виды перемещений на плоскости Реакция представля­ется в виде силы R и момента М в плоскости системы

 

Сопротивление материалов основывается на результатах тео­ретических и экспериментальных исследований. Теоретическим пу­тем получают основные расчетные формулы, применяемые при реше­нии конкретных задач, а экспериментальным устанавливают основ­ные механические характеристики материала и проверяют досто­верность выбранных моделей. В теоретической части сопротивле­ние материалов базируется на теоретической механике и матема­тике, а в экспериментальной – на физике и материаловедении. Это, прежде всего, использование представлений о межатомных вза­имодействиях, о нарушениях регулярной структуры кристалличес­ких тел в виде дислокаций, вакансий, внедрений и законах их движения под действием приложенных сил.

Сопротивление материалов базируется на трех основных за­конах. Закон равновесия гласит: для равновесия сплошного де­формируемого тела необходимо и достаточно равновесия каждого элемента тела в отдельности. Условия равновесия остаются таки­ми же, как и в механике твердого недеформируемого тела. Закон сплошности означает, что каждой точке тела до деформирования соответствует одна и только одна точка после деформирования. Физический закон, получаемый из опыта, устанавливает связь между мерами силовых и кинематических характеристик деформиро­вания.

К сопротивлению материалов примыкает строительная механи­ка стержневых систем, которая изучает конструкции в виде соче­тания стержней: фермы, рамы и др. Фермой называют геометричес­ки неизменяемую систему стержней, шарнирно соединенных между собой, несущую узловую нагрузку. Шарнирное соединение допускает поворот одного элемента относительно другого. Рама не имеет таких ограни­чений.

Обозначения основных величин соответствуют рекомендациям международной организации по стандартизации (ИСО).

 

ВНУТРЕННИЕ СИЛЫ

Метод сечений

Внутренние силы возникают между отдельными элементами сооружения и между отдельными частями элемента под действием внешних сил. Определение внутренних сил производят методом сечений. Сущность его заключается в том, что тело, находящееся в равновесии (рис.2.1, а), рассекают мысленно на две части (рис.2.1, б), отбрасывают одну из частей, заменяя влияние отброшенной части внутренними силами, и составляют уравнения равновесия для оставшейся части, на которую действуют приложенные к ней внешние силы[1] и подлежащие определению внутренние силы, распределенные по сечению.

       а

 

 

       б

 

       в

 

 

Рис. 2.1

 

Обычно плоскость сечения проводится перпендикулярно касательной к оси бруса. Систему внутренних сил можно привести к одной силе R и к одной паре М. Выберем в качестве центра приведения сил центр тяжести сечения 0 и

 

направим ось Оx правой прямоугольной системы координат перпендикулярно сечению в сторону внешней нормали. Разложим векторы R и M на составляющие (рис. 2.1, в). Силу N, направленную по касательной к оси стержня, называют продольной силой. Силы Qy и Qz, направленные по нормали к оси стержня, называют поперечными силами. Момент Т относительно оси х называют крутящим. Моменты Мy и Mz носят название изгибающих. Эти шесть внутренних усилий могут быть найдены из шести уравнений равновесия тела в пространстве, составленных для рассматриваемой части бруса. Уравнения составляются применительно к недеформированному телу, если наблюдаются малые изменения его размеров и формы. Принятие такого допущения значительно упрощает задачу, уравнения становятся линейными, что позволяет пользоваться принципом независимости действия сил (принципом наложения). Последний гласит, что результат совместного воздействия на тело системы сил равен сумме частных результатов воздействия каждой силы в отдельности.

Рис. 2.2

 

Каждому из внутренних усилий соответствует свой вид деформирования тела: N − растяжение (сжатие), Qy и Qz − сдвиг, Т − кручение, Му и Мz − изгиб. Эти деформации, как правило, возникают в различных сочетаниях. Продольная сила считается положительной, если ее направление совпадает с направлением внешней нормали к сечению. Крутящий момент принимается положительным, если при взгляде в торец отсеченной части бруса со стороны его внешней нормали он представляется направленным по ходу часовой стрелки. Изгибающий момент считается положительным, когда на левом торцe правой части бруса он направлен по ходу часовой стрелки, а на правом торце левой части − против хода часовой стрелки. Поперечная сила положительна, если она стремится вращать отсеченную часть бруса (на которую она действует) по ходу часовой стрелки относительно любой точки на внутренней нормали к сечению. Положительные знаки усилий показаны на рис.2.2.

 

 

При определении знаков внутренних усилий в вертикальных брусьях необходимо какой-то конец бруса (нижний или верхний) принимать в качестве левого и отмечать его на чертеже каким-либо значком.

Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой. Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: