Советский самолёт Ту-144

Так же как и автомобилестроение, авиация и космонавтика создали стимул для поиска новых конструкционных материалов. С развитием химии, химической физики, изучающей химические процессы с использованием достижений квантовой механики, кристаллографии стало возможным получать вещества с заранее заданными свойствами, обладающими большой прочностью, стойкостью. Их производство приняло особенно большие масштабы в конце XX в. Только за период с 1980 по 2000 г. удельный вес пластмасс среди потребляемых конструкционных материалов в развитых странах увеличился в среднем в 4—5 раз, достигнув 20%. Развивалась и металлургия, освоившая производство особо прочной легированной стали (с добавками вольфрама, молибдена), титановых сплавов, использующихся в авиации и космонавтике.

1.2. Биохимия, генетика, медицина. Химия не обошла своим вниманием и сельское хозяйство, где с началом XX в. началось применение минеральных удобрений, увеличивающих плодородие почвы. Во второй половине века широко стали применяться химические методы борьбы с вредителями сельского хозяйства и сорняками (ядохимикаты). Создание веществ, выборочно уничтожающих одни виды растений и безвредных для других, стало возможным благодаря развитию биологии, биохимии. Опыт работ 1920-1930-х гг. по совершенствованию агротехнических приёмов (в частности, Л. Бербанка по селекции семян, совершенствованию сортов культурных растений) в сочетании с удобрениями, пестицидами, совершенствованием технических средств обработки земли позволил с 1930-х по 1990-е гг. в 2-3 раза повысить урожайность многих культур.

Работы в области генетики, исследования механизма наследственности привели к развитию биотехнологий. Генетические исследования в СССР, связанные с именем Н.И. Вавилова, были свёрнуты после того, как генетика была объявлена правящей партией «лженаукой», а те, кто её разрабатывал, подверглись репрессиям. После этого лидерство в этих исследованиях перешло к США. В 1953 г. учёными Кембриджского университета Д. Уотсоном и Ф. Криком была открыта молекула ДНК, несущая в себе программу развития организма. В 1972 г. в Калифорнийском университете исследовались возможности изменения структуры ДНК, что открывало путь к созданию искусственных организмов. Первый патент в этой области за создание методом генной инженерии микроорганизма, ускоряющего переработку сырой нефти, был выдан в 1980 г. американскому учёному А. Чакрабарти. В 1988 г. Гарвардский университет вырастил с помощью генетических манипуляций живую мышь. Началось выведение новых пород животных и растений. Они гораздо лучше, чем базовые виды, приспособлены к неблагоприятным климатическим условиям, обладают иммунитетом ко многим заболеваниям и т.д. В то же время многие учёные высказывают опасения по поводу употребления в пищу генетически модифицированных продуктов. Они считают, что долгосрочные последствия этого непредсказуемы и могут быть опасными для человека.

На пороге XXI в. были открыты возможности клонирования — искусственного выращивания из одной клетки биологического подобия организма донора. Вопросы этичности столь глубокого вмешательства в природные процессы, потенциальной опасности генетических экспериментов, с вмешательством в механизм наследственности, последствия которых не всегда можно предвидеть, обсуждались неоднократно, но это не привело к их прекращению. Во многих странах эксперименты с клонированием человека запрещены.

Углубление знаний о природе живой материи раскрыло возможности трансплантации, то есть пересадки органов, лечения наследственных, обусловленных генетическими факторами заболеваний. Новые возможности перед медициной раскрыли достижения ядерной физики, электроники. В диагностике уже в 1930-е гг. стали использоваться рентгеновские аппараты, электрокардиографы, электроэнцефалографы и т.д., в последней трети века были созданы аппараты искусственной почки, вживляющийся кардиостимулятор и т.д. Новые технологии, в частности использование лазерного скальпеля, расширили возможности хирургии.

1.3. Электроника и робототехника. Огромное влияние на облик мировой цивилизации оказали достижения в области электроники. Наибольшее прикладное значение имело изобретение ЭВМ — электронно-вычислительных машин, то есть компьютеров.

Первые ЭВМ появились после Второй мировой войны. В них использовались такие же диоды и триоды, как в ламповых радиоприёмниках. Одна из таких машин, построенных в США в 1946 г., ЭНИАК, весила 30 т и занимала площадь 150 кв. м, в ней было использовано 18 тыс. электронных ламп. Но, несмотря на огромные размеры, на ней можно было проводить лишь простые вычисления, доступные ныне каждому владельцу встроенного в мобильный телефон калькулятора.

Второе поколение ЭВМ было создано после изобретения транзисторов (полупроводников) в конце 1940-х гг., заменивших электронные лампы. Транзисторы нашли широкое применение в бытовой электронике (радиоприёмниках, телевизорах, магнитофонах), с их миниатюризацией удалось увеличить объёмы памяти и быстродействие ЭВМ.

Третье поколение ЭВМ развилось после создания так называемых интегральных схем, плат, на которых размещалось в 1960-е гг. несколько десятков компонентов, преобразующих и обрабатывающих информацию. С совершенствованием технологии в 1970-е гг. на одной плате можно было поместить десятки тысяч компонентов. ЭВМ на интегральных схемах включали в себя миллионы полупроводников, их быстродействие достигло 100 млн операций в секунду.

Четвёртое поколение ЭВМ было создано с изобретением в 1971 г. микропроцессора на кремниевом кристалле — чипе, размером менее 1 кв. см, заменяющем тысячи полупроводников. Один такой кристалл мог хранить до 5 млн бит информации, что позволило перейти к созданию портативных компьютеров, предназначенных для индивидуальных пользователей.

Современные ЭВМ способны воспринимать и воспроизводить не только числовую информацию, но и снимки, графики, речевые сигналы, вести диалог с человеком на базе заложенного программного обеспечения.

Повсеместное распространение компьютеров, создание в фирмах, промышленных, коммерческих, научных центрах, государственных структурах банков данных компьютеризированной информации обеспечило новые возможности связи — создания локальных, а затем и глобальных компьютерных сетей связи. Самой известной из них является Интернет. Они позволяют практически моментально получать и передавать любую информацию, вести двусторонние и многосторонние диалоги с другими пользователями компьютеров.

Предполагается, что будущее поколение компьютеров будет иметь в качестве материального носителя памяти уже не кристаллы, а молекулы полимерного или биологически активного вещества (биочипы), что поставит в практическую плоскость создание искусственного интеллекта, способного к самопрограммированию.

С начала 1960-х гт. развитие компьютерных технологий позволило начать создание промышленных роботов, число которых к началу XXI в. в мире достигло 720 тыс. Большая их часть приходится на


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: