Список использованных источников

 

1 Buzea C. Nanomaterials and Nanoparticles: Sources and Toxicity / C. Buzea, K.Robbie. – O.: Department of Physics, Queen's University at Kingston, 2015. – 200 c.

2 Davidson W. X-ray diffraction evidence for ZnS formation in zinc activated rubber vulcanizates / W. Davidson // Physical Review. – 2018. – Vol. 194. – № 12. – P. 117–118.

3 Fang X. Inorganic semiconductor nanostructures and their field-emission

Applications / X. Fang, Y. Bando, D. Golberg // Journal of Materials Chemistry. – 2007. – Vol. 18. – № 2. – P. 509–510.

4 Akerman M. Nanocrystal targeting in vivo / M. Akerman, P. Laakkonen. – A.: Department of Bioengineering, University of California at San Diego, 2002. – 126 c.

5 Debasis B. One dimensional nanostructured materials / B. Debasis, S. Seal. – Progress in Materials Science. – 2007. – Vol. 22. – № 4. – P. 706–709.

6 Ashton M. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials / M. Ashton, J. Paul // Physical Review. – 2017. – Vol. 118. – №6. – P. 1–2.

7 Xu S. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling / S. Xu, Y. Zheng // Materials Science. – 2015. – Vol. 347. – № 1. – P. 154–159.

8 Choi H. Renal clearance of quantum dots / H. Choi, W. Liu // Nature Biotechnology. – 2007. – Vol. 10. – № 8. – P. 1165–1169.

9 Li Y. Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots / Y. Li, X. Li // Journal of Physical Chemistry. – 2004. Vol. 108. – № 41. – P. 16005–16006. 

10 Allan G. Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals: Influence of Dark States / G. Allan, C. Delerue // Physical Review. – 2005. – Vol. 95. – № 5. – P. 1–4.

11 Xie R. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/ZnCdS/ZnS Multishell Nanocrystals / R. Xie, U. Kolb // Journal of the American Chemical Society. – 2005. – Vol. 127. – № 1.  – P. 7480–7488.

12 Greenemeier L. New Electronics Promise Wireless at Warp Speed / L. Greenemeier // Scientific American. – 2008. – Vol. 92. – № 9.  – P. 46–48.

13 Lafave J. Correspondences between the classical electrostatic Thomson problem and atomic electronic structure // The Journal of Electrostatics. – 2013. – Vol. 71. – № 7.  – P. 1029–1035.

14 Wang Z. Facile Synthesis of Superparamagnetic Fluorescent Fe3O4/ZnS Hollow Nanospheres / Z. Wang, L. Wu // The Journal of the American Chemical Society. – 2009. – Vol. 131. – № 12.  – P. 11276–11277.

15 Green M. Semiconductor quantum dots and free radical induced DNA / M. Green, E. Howman // Chemical Communications. – 2005. – Vol. 12. – № 10. – P. 121–123.

16 Achermann M. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well / M. Achermann, S. Kos // Nature. – 2004. – Vol. 10. – № 16. – P. 642–645.

17 Beane G. Energy Transfer Between Quantum Dots and Conjugated Dye Molecules / G. Beane, K. Boldt // Journal of Physical Chemistry. – 2014. – Vol. 1. - № 1. – P. 1–27.

18 Fang X. ZnS nanostructures: From synthesis to applications / X. Fang, T. Zhai // Progress in Materials Science. – 2011. – Vol. 56. – № 2. – P. 188–189.

19 Shi L. Shape-Selective Synthesis and Optical Properties of Highly Ordered One-Dimensional ZnS Nanostructures / L. Shi, Y. Xu // Crystal growth and design. – 2009. – Vol. 9. – № 5. – P. 2214–2219.

20 Mohr M. Effects of a ZnS-shell on the structural and electronic properties of CdSe-nanorods / M. Mohr,  C. Thomsen // Physica Status Solidi. – 2010. – Vol. 4. – № 10. – P. 16–18.

21 Moore D. Growth of anisotropic one-dimensional ZnS nanostructures / D. Moore, Z. Wang // Journal of Materials Chemistry. – 2006. – Vol. 3. – №5. – P. 12–16.

22 Miquel J. Graphene-Based Nano-Antennas for Electromagnetic Nanocommunications in the Terahertz Band / J. Miquel, I.F. Akyildiz // Journal of Electrostatics. – 2013. – Vol. 70. – № 2.  – P. 429–431.

23 Zhang C. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources / C. Zhang, L. Fu // Advanced Materials. – 2011. – Vol. 23. – № 9. – 1020–1024.

24 Wells A. The lanthanides and actinides / A. Wells // Structural inorganic chemistry. – 1984. – Vol. 5. – № 6. – P. 1248–1273.

25 Fang X. ZnS nanostructures: From synthesis to applications / X. Fang, T. Zhai // Progress in Materials Science. – 2011. – Vol. 7. – № 9. – P. 175–278.

26 Thottoli A. K. Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles / A. K. Thottoli, A. Kaliani, A. Unni // Journal Of Nanostructure in Chemistry. – 2013. – Vol. 11. – № 4. – P. 4–5.

27 Daeso K. Zigzag  Zinc Blende ZnS Nanowires: Large Scale Synthesis and Their Structure  Evolution Induced by Electron Irradiation / K. Daeso, S. Paresh // Nano Research. – 2011. – Vol. 8. – № 2. – P. 6–8.

28 Catalytic growth of clusters of wurtzite ZnS nanorods through co-deposition of ZnS and Zn on Au film / J. Changqing, C. Yingchun, Z. Xin et al. //

CrystEngComm. – Vol. 5. – 2013. – № 6. – P. 8–9.

29 Geng  B. Y. Size-dependent optical and electrochemical band gaps of ZnS nanorods fabricated through single molecule precursor route / B. Y. Geng, X. W. Liu,  J. Z. Ma // Applied Physics Letters. – 2011. – Vol. 90. – № 12. – P. 64–67.

30  Pengfei H. A New Simple Route to ZnS Quantized Particles with Tunable Size and Shape,  and Size/Shape-Dependent  Optical Properties /  H. Pengfei, C. Yali,  L. Yanyan // Advances in Materials Physics and Chemistry. – 2013. – Vol. 3. – № 16. – P. 10–18. 

31  Xiong Q. Optical  Properties of Rectangular Cross-sectional ZnS Nanowires / Q. Xiong, G. Chen // Nano Letters. – 2014. – Vol. 4. – № 9. – P. 21–26.

32  Dasari A. Synthesis, Characterization of  ZnS nanoparticles by Coprecipitation method using various capping agents – Photo catalytic activity and Kinetic study / A. Dasari, V. Maragoni // Journal of Applied Chemistry. – 2013. – Vol. 6. – № 3. – P. 13–15.

33 Liang C. Bandgap-graded  ZnO/(CdS)1−x(ZnS)x coaxial nanowire arrays for semiconductor-sensitized solar cells / C. Liang, L. Luying // Materials Research Express. – 2014. – Vol. 5. – № 7. – P. 7–9. 63-

34 Nanda K. Energy  Levels in Embedded Semiconductor Nanoparticles and Nanowires / K. Nanda, F. Kruis // Nano Letters. – 2011. – Vol. 1. – № 11– P. 34–38.

35 Guozhen S. Carbon-Coated Single-Crystalline Zinc Sulfide Nanowires / S. Guozhen, B. Yoshio, D. Golberg // Journal of Physical Chemistry. – 2014. – Vol. 5. – № 3. – P. 33–37.   

36 Shan L. Silica-coated and annealed CdS nanowires with enhanced photoluminescence / L. Shan, L. Min, W. Jia-Hong // Nano Letters. – 2011. – Vol. 14. – № 2.– P. 11–12.

37 Pal S. Theoretical Study on the Structural, Energetic, and Optical Properties of ZnS Nanotube / S. Pal, B. Goswami // Journal of Chemical Physics. – 2006. – Vol. 111. – № 3. – P. 1556–1559.

38 Richard C. Modelling nano-clusters and nucleation / C. Richard, A. Catlow // Physical Chemistry Chemical Physics. – 2010. – Vol. 12. – № 4. – P 773–1008.

39 Alder B. Studies in Molecular Dynamics. I. General Method / B. Alder, T. Wainwright // Journal of Chemical Physics. – 2013. – Vol. 31. – № 6. – P. 459–456.

40 Dewar M. AM1: A New General Purpose Quantum Mechanical Molecular Model / M. Dewar, E. Zoebisch // Journal of the American Chemical Society. – 1985. – Vol. 107. – № 1. – P. 3902–3909.

41 Bruke L. On the tunnel effect / L. Bruke, Ranney T. // The Quarterly Journal of Experimental Psychology. – 1989. – Vol. 4. – № 3. – P. 121–138.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: