double arrow

ТЕМА № 2 Изменения, происходящие в крупах, бобовых и макаронных изделиях при кулинарной обработке

Изменение витаминов в плодах и овощах

Каратиноиды устойчивы и при тепловой обработке их количество практически остается неизменным.

Витаминов группы В в растительных продуктах очень мало и при гидротермической обработке они переходят в отвар и разрушаются незначительно.

Значительным изменениям подвергается витамин С. Аскорбиновая кислота окисляется кислородом воздуха под действием фермента переходит в дегидроаскорбиновую кислоту. При дальнейшем нагревании обе формы разрушаются. Скорость разрушения аскорбиновой кислоты зависит от свойств обрабатываемого полуфабриката, скорости нагревания, длительности обработки, контакта с кислородом воздуха, состава и рН среды. Чем выше содержание витамина С и меньше дегидроаскорбиновой кислоты, тем меньше он разрушается. Чем быстрее нагрев, тем лучше сохраняется витамин С, быстрее инактивируется фермент, окисляющий витамин С. Присутствие в варочной среде кислорода, меди, железа, марганца уменьшает количество витамина С. В кислой среде меньше разрушается витамин С. Вещества содержащиеся в овощах и плодах (аминокислоты, витамин А, Е, тиамин, антоцианы, каратиноиды) предотвращают разрушение витамина С. Варка в бульоне сохраняет витамин С. Хранение продуктов в горячем состоянии, при комнатной температуре разрушается витамин С. Наибольшие потери витамина С при припускании. При жарке он разрушается меньше, чем при гидротермической обработке так как меньше доступ кислорода, быстрый прогрев, маленький период теплового воздействия. При изготовлении изделий из овощной котлетной массы разрушается до 90% витамина С.

С целью сохранения витаминов в ходе производства кулинарной продукции из овощей и плодов необходимо соблюдать следующие требования:

- обеспечивать быстрый прогрев овощей в процессе тепловой обработки;

- варить при умеренном кипении и не допускать выкипания жидкости;

- не превышать сроков тепловой обработки предусмотренных для доведения овощей до готовности;

- использовать отвар из очищенных овощей для приготовления супов и соусов;

- не допускать длительного хранения готовой кулинарной продукции.

Лекция 1. Структурные особенности продуктов. Основной химический состав. Замачивание круп и бобовых. Деструкция клеточных стенок крупы и бобовых. Изменение содержания растворимых веществ.

Структурные особенности продуктов.

Крупа. Крупу классифицируют по виду зерна, из которого она выработана. Зерно злаковых культур состоит из плодовых и семенных оболочек, эндосперма и зародыша. Клетки, составляющие анатомические части зерна, по своей структуре и анатомическому составу различны. Оболочки представляют собой одревесневшие клетки, состоящие из клетчатки, гемицеллюлоз, пентозанов, лигнина, неусвояемых организмом человека.

Основная часть зерна — эндосперм, который включает толстостенные алейроновые клетки, заполненные алейроновыми зернами, и тонкостенные клетки с находящимися в них крахмальными зернами и белковыми веществами. Алейроновый слой у ячменя, например, многорядный (2 ... 4 ряда), сохраняется при производстве крупы и во многом определяет кулинарные свойства этой крупы при водно-тепловой обработке.

Белковые вещества и крахмальные зерна находятся в клетках эндосперма в определенном морфологическом соотношении. Белковые вещества представляют собой как бы матрицу, в которую включены крупные и мелкие крахмальные зерна, размеры и форма которых характерны для каждой культуры.

В процессе производства крупы плодовые и семенные оболочки удаляют почти полностью, алейроновый слой — частично, зародыш — в значительной степени. Морфологические особенности крупы во многом определяют ее кулинарные свойства: водопоглотительную способность, набухаемость, длительность варки и развариваемость. Так, присутствие остаточных участков оболочек зерна и алейронового слоя задерживает продвижение влаги внутрь зерен крупы, а участки, близкие к зародышу, увлажняются быстрее.

Крупы, полученные из зерен злаковых культур, состоят в осином из эндосперма. На периферии эндосперма у некоторых круп (пшено, рис, перловая) сохраняется часть алейронового слоя, семенных оболочек и зародыша.

По своему химическому составу крупы относятся к крахмалистым продуктам. В состав крупы в разных соотношениях входят: вода — 12...15 %, белки — 8...15, жиры — 1,0...7,0, угливоды — 60...86, минеральные вещества — 0,6...3,0 %. Белки в крупах представлены в основном глобулинами, глютелинами и проламинами, альбуминов очень мало.

Для белков круп характерно пониженное содержание некоторых незаменимых аминокислот, особенно лизина и треонина Белок гречневой крупы отличается уникально сбалансированным набором аминокислот. Высокое содержание цистина и цистеина способствует выведению из организма радионуклидов. Белок пшена богат лейцином, треонином, метионином.

Углеводы крупы не только служат основным энергетическим материалом, но и обусловливают кулинарные свойства крупы и ее усвояемость. Состав углеводов крупы характеризует степень отделения анатомических частей зерновки, а также в той или иной степени свидетельствует о качестве крупы. Например, крупа из сырья с повышенным содержанием недозрелых или проросших зерновых содержит больше моносахаридов; в плохо шлифованной крупе повышено содержание целлюлозы, гемицеллюлозы, а также минеральных веществ, которые концентрируются в оболочках и алейроновом слое.

Липидный состав крупы характеризуется значительным содержанием ненасыщенных жирных кислот. Входящий в состав липидов пшена милиацин обладает лекарственными свойствами, стимулирует рост молодого организма.

Из витаминов в крупах содержатся тиамин (В1), рибофлавин (В2) и никотиновая кислота PP. В гречневой крупе обнаружен рутин благодаря наличию в ней зародыша.

Минеральные вещества крупы характеризуются высоким содержанием фосфора и сравнительно малым количеством кальция (их соотношение достигает 5:1 при оптимальном 2:1). Кроме того, значительная часть фосфора входит в состав фитина, затрудняющего усвоение кальция. Многие крупы представляют собой богатый источник калия, магния, железа и микроэлементов. По массовой доле зольных элементов более ценной считается гречневая крупа.

Современный метод ионоэксклюзивной хроматографии позволил определить в крупяных экстрактах достаточно широкий спектр органических кислот и сахаров. Из монокарбоновых кислот обнаружены муравьиная, масляная, валериановая. Из оксикислоткислот — молочная, лимонная, яблочная. В экстрактах овсяной и перловой круп обнаружена щавеловоуксусная кислота, в экстрактах риса, пшена, гречневой ядрицы, овсяной и перловой круп — щавелевая.

Из ароматических кислот найдены галловая, гиппуровая и п- оксибензойная — в экстракте гречневой ядрицы; o-кумаровая — в экстрактах рисовой и овсяной крупы; миндальная — в экстрактах гречневой ядрицы и перловой крупы. Количественное содержание сахаров, %: сахароза — 0,2...0,7; глюкоза — 0,3...0,8; фруктоза — 0,01...0,7, арабиноза — 0,3...0,8. Результаты .новейших исследований по содержанию органических кислот и сахаров в составе экстрактов различных круп позволяют прогнозировать возможный механизм сорбции тяжелых металлов природными сорбентами.

Исследования последних лет показали, что крупяные изделия можно рассматривать как сорбенты экологически вредных веществ. Величина сорбции перловой крупы почти 100 %. Отмечено, что сорбция металлов крупяными изделиями (кашами) происходит преимущественно на целлюлозной матрице, крахмальные фракции не только не сорбируют металлы, но и препятствуют сорбции. В сорбции участвуют и другие водонерастворимые компоненты круп — некоторые белки, гемицеллюлозы.

В настоящее время зерновые культуры и крупы рассматривают как основной источник поступления в организм человека пищевых волокон (ПВ). Роль пищевых волокон в питании многообразна. Она состоит не только в частичном снабжении организма человека энергией, выведении из него метаболитов пищи и загрязняющих веществ, но и в регуляции физиологических и биохимических процессов в органах пищеварения. Наибольшее количество ПВ поступает из продуктов зернового происхождения и в меньшей степени — из овощей и фруктов.

Пищевые волокна представляют собой комплекс биополимеров, включающий полисахариды (целлюлозу, гемицеллюлозу пектиновые вещества), а также лигнин и связанные с ним белковые вещества.

Содержание пищевых волокон в некоторых продуктах переработки хлебных злаков составляет, г/100 г сухого вещества: белая мука 72%-ная — 3,5; отруби отработанные — 30,6; овсяная крупа — 7,2; рис — 2,7; рожь — 12,7; кукурузная мезга — 25,0; оболочки гречихи — 75,0; гороха — 60,0; сои — 50,0.

Пищевые волокна обладают следующими свойствами:

- способны связывать ионы свинца, кадмия и других тяжелых металлов, нитраты, нитриты, аммиак, радионуклиды стронция, цезия и многие органические вещества, в том числе фенолы, формальдегид;

- способны снижать в организме накопление радиоактивных веществ, т. е. обладают радиопротекторными свойствами;

- способны сорбировать и выводить из организма холевые (желчные) кислоты и тем самым понижать содержание холестерина в крови и замедлять развитие атеросклероза.

Отличительная особенность химического состава круп — присутствие в них слизистых веществ, или камедей. Камеди — полисахариды, близкие по составу к гемицеллюлозам, но способные набухать, образовывать гели и клейкие растворы с высокой вязкостью «слизи». Они содержат большие гибкие молекулы, у которых водородные связи насыщены молекулами воды. В результате набухания при комнатной температуре слизи могут поглощать до 800 % воды, в то время как крахмал при этих условиях — 30...35 %, а белковые вещества — 200...250 %. Слизистые вещества являются одним из структурных элементов клеточных стенок и играют значительную роль в обеспечении межклеточныхсвязей в эндосперме крупы.

Бобовые. Для структуры бобовых характерно наличие семенной оболочки различной толщины. Семенная оболочка состоит из палисадных клеток в виде трубчатых каналов, прижатых друг к другу, с небольшими пустотами между ними. Исследования микроструктуры фасоли на электронном сканирующем микроскопе показали, что ткань семядоли состоит из крупных толстостенных клеток овальной формы, наименьший диаметр клеток 40...50 мкм, наибольший — 90... 100 мкм, заполнены они крахмальными зернами, зернистыми белковыми образованиями и плотной белковой матрицей. Между клетками находятся пустые пространства (межклетники) в виде слегка деформированного треугольника. Поверхность крахмальных зерен негладкая, визуально шероховатая. Крахмальные зерна округлой удлиненной формы, минимальный диаметр 14...20мкм, максимальный — 25...30 мкм. Стенки клеток плотные, толщина в пределах 1 мкм. Более толстая и плотная семенная оболочка отмечена у сортов фасоли, требующих длительной варки.

Бобовые отличаются значительным содержанием белка, количество которого достигает в горохе 20...35,7 %, в фасоли —21...28.2, чечевице — 25,3...34,6, сое — 30...40 %. Белок бобовых состоит в основном из водорастворимых и солерастворимых фракций. Бобовые служат хорошим источником таких незаменимых аминокислот, как лизин, валин, лейцин, фенилаланин. Липидов в бобовых содержится 0,5...2,5 %, преобладают непредельные жирные кислоты (60...80 %).

Основную массу сухого вещества бобовых составляют углеводы: сахара, крахмал, гемицеллюлоза, клетчатка, пектиновые вещества. Содержание крахмала 30...55 %, пектиновых веществ —3,5...5, гемйцеллюлозы — 1,2...8,8, клетчатки — 1,2...7,7 %. Минеральные вещества бобовых представлены макроэлементами (калий, фосфор, кальций, магний) и микроэлементами (цинк, железо). В бобовых содержатся почти все витамины группы В, а также ниацин, токоферол, аскорбиновая кислота.

Характерная особенность химического состава бобовых — присутствие в них антипитательных веществ белковой природы — ингибиторов ферментов желудочного тракта. Ингибиторы образуют с ферментами, расщепляющими белки, устойчивые соединения, лишенные ферментативной активности. Они устойчивы к протеолитическому расщеплению, воздействию высокой температуры, обработке щелочами, солями, кислотами. При Употреблении сои пищеварительная система человека значительно угнетается, длительное употребление может привести к Увеличению поджелудочной железы, поэтому сою перед употреблением подвергают обработке при высоких температурах. В семенах бобовых отмечена самая высокая активность ингибиторов трипсина: фасоль — 0,5...4,6 мг/г, горох — 0,2...4,5, чина — 8,8, соя — 11,2...38,0. Для сравнения: в картофеле — 1,3...8,6, капусте — 1,8...2,1, свекле — 0,188 мг/г.

Бобовые, как и крупы, могут быть хорошими адсорбатами тяжелых металлов, в частности свинца. Установлено, что количество свинца, связанного клеточными стенками вареной фасоли может достигать 60...70 % к исходному.

Макаронные изделия. Пищевая ценность макаронных изделий определяется содержанием в них (г на 100 г продукта) белков — 10,4...11,8, жиров — 1,1...2,8, углеводов — 71,8...75,1. Влажность макаронных изделий не должна превышать 13%. Качество макаронных изделий зависит от вида используемой муки (из твердой, высокостекловидной, мучнистой, мягкой пшеницы), различных обогатителей и пищевых добавок. Влажность теста для производства макаронных изделий 28...35 %.

Крахмал муки в этих условиях характеризуется слабой способностью к набуханию. Он связывает воду адсорбционно, в основном благодаря активности гидрофильных групп, и в микрокапиллярах. Тесто для макарон представляет собой гидратированный белковый студень клейковины, обволакивающий и склеивающий между собой зерна увлажненного крахмала. Дальнейшая технология сушки и прессования при производстве макаронных изделий приводит к частичной денатурации белков и нарушению целостности крахмальных зерен.

Замачивание круп и бобовых

Замачивание и варка относятся к тем процессам, которые способны изменить структуру крупы и бобовых и вызвать размягчение тканей. Структура растительного продукта зависит от состава и строения его клеток и прежде всего от физического состояния полимеров. При взаимодействии крупы и бобовых с водой они набухают. Набухание — поглощение жидкости, сопровождающееся значительным увеличением объема и массы тела (продукта). Механизм набухания заключается во взаимном растворении высокомолекулярного вещества и дисперсной среды. Скорость диффузии молекул воды намного превосходит скорость диффузии молекул полимера. В результате вода односторонне диффундирует в тело, гидратируя полярные участки составляющих его макромолекул. При этом гибкие молекулы тела отодвигаются друг от друга, связь между ними ослабевает, объем тела увеличивается — оно набухает.

Способность крупы и бобовых поглощать воду при замачивании объясняется гидрофильными свойствами содержимого клеток и клеточных стенок: белковых веществ, крахмала, пектиновых веществ, гемицеллюлозы, клетчатки. Для крупы и бобовых характерно ограниченное или предельное набухание, при котором набухшее тело остается в состоянии студня в отличие от неограниченного, когда после набухания тело полностью переходит в раствор. Ограниченное набухание сопровождается частичным Растворением полимеров, входящих в состав крупы и бобовых. Так, в процессе промывания крупы в воду частично переходят белки, крахмал, сахара и другие пищевые вещества. Сухой остаток промывных вод может содержать до 41 % крахмала, до 33 % азотистых веществ, до 13 % сахара. При замачивании фасоли в течение 10 ч извлекается 12 % азота главным образом за счет небелковых веществ.

Потери витаминов (В1 В2, РР) при замачивании бобовых в мягкой воде больше, чем в жесткой. При промывании крупа поглощает воду и ее первоначальная масса увеличивается в среднем на 15...30 %. Если процесс промывания крупы занимает 10-15 мин, количество поглощенной влаги составляет, %: пшеном — 38...39, рисом — 29...33, овсяной крупой — 28...34, гречневой — 28...31; перловой — 28...29. В большей степени изменяется первоначальная масса при промывании пшена, в меньшей — перловой крупы. Для насыщения влагой в процессе замачивания при температуре 20 °С перловой крупы требуется 7...8 ч, пшена — 30-40 мин, риса — 1 ч. Остальные крупы занимают промежуточное положение.

Поглощение влаги и ее продвижение внутрь зерен крупы в процессе замачивания протекает у разных видов крупы неодинаково.

Распределение влаги в зернах рисовой крупы происходит неравномерно. Перепад влажности между центральными участками и периферийными в первые 10 мин увлажнения составляет 4,5-5 %. Через 20 мин эта разница значительно сокращается и составляет менее 1,5 %. Это свидетельствует о быстром перераспределении влаги по всему объему зерна крупы. Наличие в зерне риса участков, влагосодержание которых способно в разной мере изменяться в процессе увлажнения (мучнистая часть эндосперма, участки, близкие к зародышу), приводит к неравномерному характеру процессов, сопровождающих перенос влаги. Изменения внутренних механических напряжений при крайне тонкой клеточной структуре эндосперма и недостаточном количестве межклеточных связующих веществ, роль которых в перловой крупе выполняют слизистые вещества, приводит к скачкообразному поступлению воды с образованием микро- трещин, способствующих раскалыванию зерна на отдельных участках. Причиной образования трещин при увлажнении риса считают мгновенно возросшее осмотическое давление в сочетании с градиентом концентрации влаги. Влага является основным фактором, вызывающим размягчение зерен крупы. Так, обычное 30-минутное замачивание в воде температурой 20 °С снижает микротвердость зерен рисовой крупы в 3,5 раза, перловой — в 1,5 раза по сравнению с первоначальной.

Объем и масса бобовых, так же как и круп, при замачивании увеличивается в результате поглощения влаги. На рис. 10.3 представлены данные о приращении объема и массы гороха различных сортов при замачивании в воде комнатной температуры. Для бобовых характерно опережающее увеличение массы. Так, 6-часовое замачивание при комнатной температуре увеличивает массу бобовых в среднем, %: гороха — на 90... 110, фасоли — на 70...98, чечевицы — на 80...91. Вода проникает внутрь семян бобовых через семенную оболочку, толщина которой влияет на интенсивность продвижения влаги.

Варка круп и бобовых сопровождается изменением их физико-химических свойств и приводит, прежде всего к размягчению структуры зерен крупы и семядолей бобовых, изменению их консистенции и массы. Повышение температуры ускоряет продвижение влаги внутрь зерен крупы и семядолей бобовых, интенсивнее протекает процесс набухания белковых веществ и углеводов клеточных стенок, а также начавшаяся клейстеризация крахмала. Белки в процессе варки денатурируют, а поглощенная ими влага выпрессовывается и поглощается клейстеризующимся крахмалом. Медленное распределение влаги внутри зерен крупы задерживает процессы физико-коллоидной природы, сопровождающие варку, и тем самым удлиняет продолжительность варки отдельных видов круп. Скорость распределения влаги в зернах перловой крупы в 2...3 раза меньше, чем в зернах.

На длительность варки оказывает влияние толщина клеточных стенок. Способность к сохранению клеточной структуры в процессе варки определяет консистенцию и внешний вид конечного продукта, эластичность и упругость ткани отдельного зерна крупы. Эта особенность перловой крупы обеспечивает хорошую сохраняемость формы ее зерна на протяжении всего периода варки. У крупы с тонкой клеточной структурой, например рисовой, в процессе варки происходит частичный разрыв клеточных стенок под давлением оклейстеризованного крахмала, что приводит к нарушению формы и целостности зерен. Следует также заметить, что начальная температура клейстеризации крахмала у перловой крупы (65 °С) ниже, чем у рисовой (70…85 °С), поэтому начавшийся процесс клейстеризации также может задерживать продвижение влаги к центру зерна крупы. Несмотря на более высокую температуру клейстеризации рисового крахмала, этот процесс в клетках эндосперма рисовой крупы заканчивается быстрее и протекает с большим изменением крахмальных гранул, чем в клетках вареной перловой крупы.

Слизистые вещества в крупах образуют растворы различной относительной вязкости.

Анализ показывает, что из перловой крупы извлекается в 4 раза больше слизей, чем из рисовой. Относительная вязкость 1%-ного раствора перловых слизей при 20 °С составила 19...20, а у риса близка к единице. Повышение температуры до 75 °С снижает вязкость раствора слизей перловой крупы, но она остается высокой. Повышение температуры не отражается на вязкости слизистых веществ рисовой крупы.

Сравнение относительной вязкости 1%-ного раствора слизей и 1%-ного раствора крахмала при температуре 75 °С показало, что вязкость перловых слизей в этих условиях выше вязкости раствора крахмала более чем в 10 раз. Вязкость раствора рисовых слизей меньше вязкости крахмального клейстера в 2 раза. Есть основания предполагать, что роль слизистых веществ риса в процессах внутреннего влагораспределения между основными веществами, входящими в химический состав ядра крупы, незначительна, в то время как в перловой крупе слизистые вещества, входя в состав клеточных стенок, обладая высокой вязкостью растворов и поглощая значительное количество влаги, задерживают продвижение влаги внутрь зерна крупы и удлиняют продолжительность варки. Овсяная крупа в процессе варки ведет себя примерно так же, как перловая.

Деструкция клеточных стенок крупы и бобовых

В процессе варки под действием проникающей влаги и температуры происходит деструкция клеточных стенок. Подробно механизм этой деструкции рассмотрен выше. Степень деструкции зависит от состава клеточных стенок. В клеточных стенках крупы преобладают гемицеллюлозы, деструкция их протекает с образованием растворимых фракций; одновременно идет процесс набухания клетчатки, слизистых веществ. Термоустойчивость клеточных стенок также зависит от их состава. Так, установлено, что овсяная и перловая крупы, в клеточных стенках которых содержится больше клетчатки и слизистых веществ, варятся дольше, чем другие крупы. Изменение содержания клеточных стенок (степень деструкции) в крупах в зависимости от продолжительности варки. Начальный период гидротермической обработки характеризуется заметным снижением количества определяемых клеточных стенок. В дальнейшем деструкция клеточных стенок замедляется и к моменту готовности каши остается практически постоянной.

С позиции физико-химических процессов, протекающих в крупах при гидротермической обработке, можно объяснить отдельные кулинарные приемы, используемые при приготовлении каши различной консистенции. Необходимость упревания каши можно объяснить таким образом: температура клейстеризации крахмала крупы на 10...20 °С ниже температуры начала активной деструкции клеточных стенок эндосперма крупы. В ходе клейстеризации крахмал связывает влагу, когда структурные компоненты клеточных стенок еще не успели набухнуть в достаточной степени. Подвижность воды в вязких растворах крахмального клейстера и студне набухших слизистых веществ понижена. Ее распределение по всему объему зерна протекает медленно. В связи с этим замедляются и гидролитическая деструкция клеточных стенок, и размягчение структуры зерен крупы. Скорость процессов возрастает по мере увеличения количества воды, используемой для варки каш. Чтобы снизить водосвязывающую способность крахмала, слизистых веществ при варке рассыпчатой каши, крупу предварительно прогревают в жарочном шкафу или слегка обжаривают.

Клеточные стенки фасоли по качественному и количественному составу близки к клеточным стенкам овощей и корнеплодов. В результате деструкции клеточных стенок с образованием растворимых веществ их определяемое количество после варки снизилось в среднем на 22 %. Из состава клеточных стенок наибольшей деструкции подверглись пектиновые вещества — в среднем на 40 %. В меньшей степени — гемицеллюлозы. Деструкции в процессе варки подвергается и структурный белок клеточных стенок экстенсин. Основной структурный элемент этого белка — оксипролин. При этом в трудноразвариваемых сортах бобовых оксипролин подвергается меньшим изменениям. Количество его в вареной фасоли, как видно из табл. 10.4, снижается в 1,5 раза по сравнению с сырой. Аналогичные изменения отмечены в клеточных стенках при варке гороха. При этом степень деструкции протопектина может достигать 38...43 % первоначального содержания.

Известно, что повышенное содержание кальция и магния в клеточных стенках обусловливает относительно высокую термоустойчивость протопектина. Так, сорта гороха, в клеточных стенках которых содержится относительно большое количество двухвалентных катионов Са2+ и Mg2+, варятся долго. У замоченных бобовых продолжительность варки зависит от тех же факторов, что и у овощей и корнеплодов.

Следует отметить, что роль осадителя катионов в ионообменных реакциях в клеточных стенках бобовых выполняет в основном фитиновая кислота, поэтому продолжительность варки различных сортов гороха и фасоли находится в обратной зависимости от содержания в них фитиновой кислоты. Ухудшение развариваемости бобовых в результате их хранения объясняется уменьшением содержания в них фитиновой кислоты, которая в процессе хранения подвергается ферментативному расщеплению под действием фермента фитазы. Замачивание семян гороха и фасоли в растворах натриевых солей (NaHC03, Na2C03, Na3P04) в течение 2 ч снижает продолжительность варки примерно вдвое, и наоборот, в растворах лимонной и молочной кислот продолжительность варки бобовых резко возрастает.

Изменение содержания растворимых веществ

При тепловой кулинарной обработке крупы, бобовых и макаронных изделий происходит накопление в них растворимых веществ, причем в основном крахмала. Клейстеризация крахмала сопровождается растворением части крахмальных полисахаридов, что приводит к значительному увеличению содержания водорастворимых веществ в готовых кулинарных изделиях. Так, содержание растворимых веществ в кашах с влажностью 78 % может достигать 19,0...26,5 % при исходном содержании в крупе 2,6…6,7 %. Больше всего водорастворимых веществ накапливается в рисовой крупе, меньше — в гречневой. При остывании и хранении каши в остывшем состоянии растворимость крахмальных полисахаридов понижается в результате ретроградации амилозы с одновременным ухудшением органолептических свойств готовой продукции. Процесс уменьшения содержания водорастворимых веществ в готовых кулинарных изделиях при хранении, сопровождающийся ухудшением органолептических свойств, называют черствением. Быстрее всего черствеет пшенная каша, затем рисовая, гречневая, манная. Рассыпчатые каши черствеют медленнее вязких и жидких.

Разогревание остывших каш до 95 °С увеличивает растворимость крахмальных полисахаридов и улучшает органолептические показатели готовых изделий. Так, в гречневой, пшенной, рисовой кашах и отварной вермишели, хранившихся 24 ч при комнатной температуре, после разогревания до 95 °С количество водорастворимых веществ составило соответственно 100; 87; 85,8 и 98,3 % их содержания в свежеприготовленных изделиях. Достаточно стабильным содержание водорастворимых веществ остается в кашах в случае их хранения при 70...80 °С. Эта температура рекомендуется для хранения вторых блюд и гарниров в мармитах линии раздачи.

При тепловой обработке круп и бобовых происходят разрушение витаминов и уменьшение их содержания в готовом блюде по сравнению с исходным продуктом. Так, при варке пшена разрушается 26 % витамина В1 гречневой крупы — 22,4, перловой — 18, манной — 8,8 %, рисовой — почти полностью. Значительные потери тиамина (B1) при варке рисовой крупы объясняются быстрым воздействием влаги на зерна крупы. В гречневой крупе за этот же период варки разрушается только 22,4 % тиамина. Это можно объяснить анатомическим строением ядрицы, у которой витамины находятся в основном в зародыше, расположенном в центральной части зерна (в виде лепестка).

В некоторых крупах содержится каротин. Так, в пшене с ярко-желтой окраской обнаружено свыше 0,6...0,8 мг% каротинов, в образцах с окраской средней интенсивности — 0,4...0,59, у слабоокрашенных — 0,3...0,39 мг%. Каротины, как и витамин А, достаточно устойчивы к тепловому воздействию. У бобовых потери рибофлавина (В2) составляют 43...46 %, тиамина (Bi) — 59...68, никотиновой кислоты РР — 16... 17 %. Наибольшие потери витаминов наблюдаются при варке бобовых без замачивания, что объясняется удлинением в этом случае продолжительности варки. Варка гороха, фасоли и других бобовых сопровождается потерей ими микроэлементов (марганец, медь, молибден), играющих важную роль в процессах кроветворения и фосфорно-кальциевом обмене.

При варке крупы и бобовых происходят некоторые потери аминокислот. Так, при варке пшена потери лизина составляют 10,6 %, метионина — 9,5, триптофана — 12,9 %; при варке фасоли потери этих аминокислот составили соответственно 19,8; 20,9 и 23,7 %.


Сейчас читают про: