double arrow

САНОГЕНЕЗ 4 страница


Патохимическая стадия

В результате взаимодействия Тц с соматической клеткой освобождаются медиаторы аллергии. Они освобождаются из лимфоцитов и в реакциях замедленного типа называются лимфокинами.

1. Фактор переноса (трансферфактор). Он обладает сенсибилизирующим влиянием на интактные лимфоциты. Этот фактор играет роль при переливании крови.

2. Митогенетический фактор. Он стимулирует пролиферацию лимфоцитов, их деление, способствует популяции Т-сенсибилизированных лимфоцитов.

3. Фактор ингибирующий миграцию макрофагов (MIF)). Он способствует накоплению макрофагов в области аллергической альтерации и вызывает развитие воспаления.

4. Лимфотоксин. Он оказывает цитотоксический эффект, вызывает разрушение и гибель клетки-мишени.

5. Фактор хемотаксиса. Он способствует скоплению нейтрофилов и моноцитов в очаге воспаления.

6. Кожнореактивный фактор. Он обусловливает развитие кожных проявлений

7. Интерферон. Он угнетает способность вирусов инфицировать клетку.

8. Простагландины. Они способствуют развитию лихорадки, активируют Тц лимфоциты.

Все эти факторы вызывают формирование типовых патологических процессов: воспаления, лихорадки и шока.

Лимфокины вызывают развитие клинических проявлений

Патофизиологическая стадия

Эта стадия проявляется в виде:

1. Бактериальной аллергии (болезней туберкулинового типа)

2. Контактной аллергии

Бактериальная аллергия

Если организм сенсибилизирован, то на месте введения фильтрата из убитых бактерий через 2-3 дня образуется воспалительный инфильтрат. Бактериальная аллергия является

показателем не только аллергии, но и вакцинации.

Контактная аллергия

Она возникает при контакте с чужеродным веществом (препараты брома, соли тяжелых металлов, красители, косметические средства, новокаин, пенициллин, моющие средства). Эти вещества - гаптены, но, соединяясь с белками кожи, становятся полными аллергенами. Проявляется контактная аллергия кожными реакциями - гиперемия, дерматит, зуд, сыпь.

Повышенная чувствительность немедленного типа

Это - гуморальные реакции, в них участвуют В-лимфоциты.

Механизмы развития

1. Патоиммунная стадия

2. Патохимическая стадия

3. Патофизиологическая стадия

Патоиммунная стадия

Эта стадия отражает механизмы сенсибилизации.

Антиген Макрофаг Вл Всенс. Вп

Вт

ИЛ-1 ИЛ-2

Плазматическая

Тх клетка

IgE IgM IgG

Антиген взаимодействует с макрофагом и с участием Тх, ИЛ-1 и ИЛ-2 В-лимфоциты становятся сенсибилизированными, антигенчувствительными.

При первичном воздействии антигена из Всенс. лимфоцитов образуются В-клетки памяти, которые сохраняют повышенную чувствительность к антигену, Вт лимфоциты и плазматические клетки. Плазматические клетки продуцируют иммуноглобулины IgE и IgG. Основную роль в аллергических реакциях играют IgE - аллергические антитела. IgE фиксируются на соматических клетках, в частности, на тучных клетках. Клетке становится чувствительной к антигену. По своему строению IgE имет тяжелую и легкие цепи. Отрезок Fc (тяжелая цепь) имеет сродство к тучным клеткам. Легкие цепи являются антигенчувствительными: с ними реагирует антиген. Таким образом IgE превращается в рецептор для антигена. Кроме IgE, в плазматических клетках образуются IgG. Они могут проявлять свойства IgE, то-есть быть аллергическими антителами. Часть IgG является блокирующими антителами.

IgE способны образовывать с антигеном патоиммунный комплекс, который вызывает разрушение, лизис клетки и освобождение медиаторов аллергии.

Патохимическая стадия

Под влиянием патоиммунного комплекса из клеток освобождаются медиаторы аллергии, которые способствуют клиническим проявлениям. Основными медиаторами при аллергических реакциях немедленного типа являются:

1. Гистамин - он освобождается из тучных клеток, расширяет сосуды, повышает сосудистую проницаемость, вызывает спазм бронхов и гладкой мускулатуры, увеличивает секрецию слизи.

2. Гепарин - освобождается из тучных клеток, усиливает фибринолитическую активность крови

3. Медленно реагирующая субстанция аллергии - является производной арахидоновой кислоты, образуется в тучных клетках легких. МРСА вызывает медленный спазм бронхиол при бронхиальной астме. Спазм не снимается антигистаминными препаратами. Образуется мокрота, закупоривающая бронхи.

4. Брадикинин вызывает повышение сосудистой проницаемости, расширяет сосуды, вызывает боль, зуд.

5. Ацетилхолин обладает теми же свойствами, что гистамин и брадикинин, но в меньшей степени.

6. Простагландины вызывают эффект, аналогичный гистамину и брадикинину, способствует развитию лихорадки.

7. Фактор хемотаксиса эозинофилов способствует хемотаксису эозинофилов. Эозинофилия свидетельствует об аллергизации организма.

8 Комплемент - участвует в реализации реакций II типа.

Проявлениями действия медиаторов являются воспаление, лихорадка, шок.

Патофизиологическая стадия

На этой стадии формируются типовые патологические процессы и аллергические заболевания. Выделяют 3 группы аллергических реакций:

1. Аллергические реакции I типа: в этих реакциях играют роль IgE

2. Аллергические реакции II типа: в этих реакциях принимают участие IgG

3. Аллергические реакции III типа ( реакции свободных иммунных комплексов).

К I группе аллергических реакций относятся атопические реакции, анафилаксия.

Атопические реакции

К ним относятся сенная лихорадка, бронхиальная астма, крапивница, отек Квинке.

Сенная лихорадка возникает при воздействии пыльцы растений. Заболевание проявляется ринитом, конъюктивитом, зудом, слезотечением, кашлем, иногда лихорадка, бронхит. Все эти симптомы обусловлены участием гистамина.

Бронхиальная астма возникает при действии бытовых аллергенов - домашняя пыль, которая содержит клещи. Заболевание характеризуется приступообразными нарушениями бронхиальной проходимости, клиническим выражением которых являются приступы экспираторного (с затруднением выдоха) удушья. Основную роль в бронхоспазме играет медленно реагирующая субстанция аллергии.

Крапивница - аллергическое заболевание, характеризующееся быстрым образованием отеков очагового характера. В основе патогенеза крапивницы лежит повышение сосудистой проницаемости под влиянием гистамина. Заболевание развивается при действии различных аллергенов. Оно характеризуется лихорадкой, головной болью, общим недомоганием, зудом. Крапивница занимает второе место после бронхиальной астмы.

Ангионевротический отек (отек Квинке) - локально ограниченный отек кожи и подкожной клетчатки с преимущественной локализацией в области лица, слизистых оболочек полости рта, конечностей. Отек Квинке является одной из разновидностей крапивницы. Заболевание возникает при действии лекарственных препаратов, пищевых аллергенов, пыльцы растений. В патогенезе отека Квинке играет роль гистамин.

Анафилаксия

Анафилаксия - беззащитность. Анафилаксия проявляется общими и местными реакциями. Общая анафилаксия проявляется анафилактическим шоком.

Анафилактический шок может развиваться при введении в организм антибиотиков, антитоксических сывороток, сульфаниламидов, при приеме некоторых пищевых продуктов. При анафилаксии наряду с IgE в развитии шока принимают участие циркулирующие IgG. В образовании патоиммунного комплекса принимает участие медиатор анафилатоксин. Его действие реализуется через выброс гистамина. Шок характеризуется падением артериального давления, расширением сосудов и развитием коллапса, развитием сердечной и дыхательной недостаточности. Анафилактический шок может развиваться при укусе пчел. В этом случае шок развивается с участием ацетилхолина.

Местная анафилаксия (феномен Артюса) возникает на месте повторного введения лекарственного препарата, лошадиной сыворотки в дозе 0,5-1,0 мл кролику с интервалом в 5-6 дней. Местная анафилаксия сопровождается развитием асептического воспаления, гиперемии, отека, эмиграции лейкоцитов. Реакция проявляется после 4-5 инъекций препарата. В механизмах развития феномена Артюса участвуют IgG.

Цитолитические реакции

Аллерген фиксируется на клетках крови. Образуется патоиммунный комплекс с IgG в присутствии комплемента (С-3,С-5). Это комплекс фиксируется на мембранах клеток крови и с участием цитолизина вызывает разрушение клеток. По этому механизму развиваются аллергические гемопатии (анемии, гемолитическая желтуха, лейкопении, тромбоцитопении с явлениями кровоизлияний и кровотечения).

Болезни свободных иммунных комплексов

В качестве антител в этих реакциях выступают циркулирующие IgG. Патоиммунный комплекс образуется в крови с участием комплемента и затем фиксируется на мембранах почек, лимфоузлов, эндотелии микроциркуляторного русла. Аллергическая реакция в виде воспалительного процесса развивается в любом органе.

Примером этих реакций может служить сывороточная болезнь, которая возникает после введения лечебной сыворотки, антибиотиков, гормонов, белковых препаратов. Заболевание проявляется генерализованной реакцией лимфоузлов, лихорадкой, кожными проявлениями в виде крапивницы. В патологический процесс включаются почки, миокард, суставы. В крови образуются конгломераты, которые закупоривают капилляры и нарушают микроциркуляцию.

Аутоаллергия

Аутоаллергия развивается в ответ на действие аутоаллергенов (эндогенных аллергенов). Физиологическая система иммунного ответа реагирует на аутоаллергены выработкой аутоантител.

Аутоаллергены

Естественные Приобретенные

(первичные) (вторичные)

белки нормаль- I II III IY

ных тканей

Аутоаллергия - это состояние аутоагрессии иммунокомпетентных клеток, способных реагировать с белками собственных тканей.

Аутоаллергия относится к смешанной аллергии. Она развивается по механизму повышенной чувствительности замедленного типа и повышенной чувствительности немедленного типа.

ПЧЗТ Тц

ААГ ФСИО

ПЧНТ IgE, IgG, IgM

Механизмы развития аутоаллергии

Существует несколько взглядов на на механизмы развития аутоаллергии.

1. Первичные ААГ. Некоторые ткани организма в эмбриогенезе развивались вне контакта с ФСИО. Эти ткани оказались в изоляции, за гистогематическим барьером, и протеины этих органов и тканей не имеют генов гистосовместимости. Эти протеины несовместимы с иммунокомпетентными клетками (В- и Т-лимфоцитами) и становятся аутоаллергенами. Эти лимфоциты и А-клетки относятся к этим протеинам как чужеродным. Это - протеины сетчатки, хрусталика, нервной системы, щитовидной железы, мужских половых гонад. При нарушении гистогематического барьера эти протеины выходят в кровь и лимфоциты воспринимают их как чужеродные. При взаимодействии протеинов и лимфоцитов развивается аутоаллергическая реакция. По этому механизму развиваются такие заболевания как тиреодит, энцефаломиелит, офтальмия (воспалительные процессы поврежденного глаза).

2. Второй механизм, который способствует развитию аутоаллергических реакций, связан с нарушением механизмов толерантности иммунокомпетентных клеток, в частности, Т-клеток. По теории Бернета эти лимфоциты образуют запретный клон. В процессе развития организма эти лимфоциты не способны различать свое и чужое. Этот клон лимфоцитов или исчезает к рождению, или находится в депрессированном состоянии под контролем гена иммунной супрессии (Is). При ослаблении генного контроля функция Т-супрессоров становится недостаточной и агрессивные лимфоциты (лимфоциты запретного клона) экспрессируются, становятся активными и начинают выполнять роль аутоаллергенов. Таким образом, аутоаллергические реакции развиваются в этом случае в результате нарушения генного механизма.

Согласно второму взгляду, при действии мутагенных факторов в организме образуются мутантные лимфоциты, способные выступать как аутоантигены. С участием этого механизма развивается ряд заболеваний.

Ревматоидный артрит: это аутоаллергическое воспаление суставов. Заболевание развивается при участии ревматоидного фактора (IgM). Это антитело. IgM образуются при воздействии аллергена (некоторые участки IgG). IgG имеет антигенные детерминанты - идиотипы. На них реагируют В-лимфоциты. В ответ на идиотипы вырабатывается антиидиотип (IgM). Образуется комплекс "идиотип-антиидиотип", который поражает синовиальные мембраны суставов.

Диссеминированная красная волчанка. ДНК соединительной ткани часто подвергается действию патологических лимфоцитов. В этом случае ДНК выступает как аутоаллерген. В ответ на образование аутоаллергенов образуются аутоантитела. При реакции ААГ+ААТ образуется патоиммунный комплекс, который фиксируется на коже, почках, миокарде, стенке сосудов, вызывая поражение этих тканей.

Миастения. Патологические лимфоциты (В-клетки) способны воспринимать ацетилхолиновые рецепторы как чужеродные, как аутоантигены. Образуются противоацетилхолиновые антитела, которые блокируют ацетилхолиновые рецепторы. Развивается мышечная слабость, мышцы не сокращаются.

Заболевания при действии вторичных (приобретенных) аутоаллергенов

I. Измененные, денатурированные белки способны приобретать свойства аутоаллергенов. Физиологическая система иммунного ответа реагирует на эти белки выработкой аутоантител. Причиной появления таких белков являются обширные ожоги. Образуется патоиммунный комплекс, вызывающий аутоаллергическую реакцию.

II. Ряд инфекционных возбудителей и тканевых аллергенов имеют общие детерминантные группировки. Некоторые штаммы кишечной палочки и белки слизистой кишечника имеют общие детерминанты. По этому механизму развивается язвенный колит аутоаллергического происхождения. Ревмокардит. Стрептококк А имеет сходные детерминантные группировки с кардиомиоцитом. Образуется патоиммунный комплекс, который повреждает миокард. По этому механизму развивается инфекционно-аллергическая бронхиальная астма. Развитие ее связано с тем, что микрофлора дыхательных путей имеет общие детерминантные группировки с протеинами тканей легких.

III. Ионизирующая радиация может вызывать разрушение тканей и появление аутоаллергенов. При инфаркте миокарда, при некрозах сердечной мышцы кардиомиоциты повреждаются и становятся аутоаллергенами. Они вызывают образование аутоантител с последующим образованием патоиммунного комплекса.

IY. К аутоаллергенам относятся промежуточные аллергены. В этом случае в организме могут образовываться комплексные аутоаллергены. Чаще всего эта группа аутоаллергических заболеваний возникает с участием вирусов. Вирусы включаются в клетку и повреждают ее. На разрушенные клетки физиологическая система иммунного ответа отвечает развитием аутоаллергического процесса.

Гипосенсибилизация

Гипосенсибилизация - снижение повышенной чувствительности организма на действие антигена.

Механизмы гипосенсибилизации лежат в основе принципов лечения и профилактики аллергических заболеваний.

В механизмах гипосенсибилизации участвуют нервная и эндокринная системы, биологические активные вещества.

ЦНС

Эндокринная Биологические

система СНС ПСНС активные

вещества

А-клетки, Т- и В-клетки

Существуют методы неспецифической и специфической гипосенсибилизации.

Неспецифические методы

1. Использование седативных препаратов, вызывающих усиление тормозных процессов в ЦНС. Показано, что при наркозе анафилактический шок не развивается.

2. Преобладание симпатической нервной системы (в частности, a -адренергической иннервации) снижает активность аллергической реакции. Можно использовать введение адреналина. Гипосенсибилизация связана с угнетением парасимпатической нервной системы, преобладание холинергических механизмов. С этой целью можно использовать атропин.

3. Снижение активности аллергических реакций возможно при использовании противоаллергических гормонов, в частности, кортизола и АКТГ.

4. Применение антигистаминных препаратов, так как в развитии многих аллергических реакций участвует гистамин.

5. Использование больших доз биологических активных веществ.

Специфическая гипосенсибилизация

1. Устранение аллергена.

2. Нагрузка антигеном. Большие дозы антигена и малые, но часто вводимые дозы антигена вызывают гипосенсибилизацию. При этом развивается толерантность: стимулируется образование Т- и В-толерантных клеток, активируются Т-супрессоры, происходит образование блокирующих антител (IgG).

3. Нагрузка антителами. Введение антител в больших дозах приводит к блокаде и нейтрaлизации антигена.

ПАТОФИЗИОЛОГИЯ ЛИХОРАДКИ

Лихорадка - типовой патологический процесс, в основе которого лежит накопление тепла в организме в результате перестройки терморегуляции под действием чрезвычайных раздражителей инфекционной и неинфекционной природы. Основными симптомами лихорадки являются: озноб, жар, испарина. Лихорадка может быть симптомом, неспецифическим проявлением или самостоятельным заболеванием.

Сравнительно-патологическое значение лихорадки.

Способность к развитию лихорадки сформировалась в процессе эволюции: она наблюдается только у гомойотермных животных и человека. Пойкилотермные животные отвечают на действие ряда патогенных раздражителей повышением теплопродукции, но задержки тепла не происходит: наряду с теплопродукцией активируются и процессы теплоотдачи. В онтогенезе способность развивать лихорадочную реакцию формируется по-разному в зависимости от степени развития ЦНС. У новорожденных и детей первого года жизни способность регулировать теплоотдачу развита недостаточно, поэтому лихорадка протекает у них атипично: она колеблется скачкообразно. В этом возрасте чаще наблюдаются явления перегревания и переохлаждения.

О лихорадке знали давно, но научное понимание процесса развития лихорадки определилось в XX веке.

Существует две теории развития лихорадки:

1) обменно-интоксикационная теория (Р.Вирхов)

2) терморегуляторная теория (С.П.Боткин, И.П.Павлов)

Согласно обменно-интоксикационной теории лихорадка - это инфекционный процесс, процесс самоотровления. Возникновение ее связано с нарушением обмена веществ. С точки зрения терморегуляторной теории лихорадка рассматривается как рефлекс, в основе которого лежит нарушение равновесия процессов теплоотдачи и теплопродукции в связи с перестройкой функции терморегуляторного центра. В настоящее время принята терморегуляторная теория.

Х Х Х Теплопродукция

Терморецепторы ТВН

Т Т Т Теплоотдача

Как происходит терморегуляция в организме? Главный центр терморегуляции находится в заднем гипоталамусе и представлен тормозными вставочными нейронами (интернейронами). Их главной функцией является определение и поддержание нормального температурного гомеостаза. Информация о температуре организма к интегративному центру поступает с периферических терморецепторов (холодовых и тепловых, глубоких и поверхностных: с внутренних органов, сосудистой стенки), а также с центральных тепловых и холодовых терморецепторов, которые расположены в гипоталамусе и спинном мозге. Главный терморегуляторный центр анализирует эту информацию. Если температура снижается, то возбуждаются холодовые термонейроны, которые усиливают теплообразование, и тормозятся тепловые термонейроны, которые ограничивают теплорассеивание. В результате этих процессов температура остается в пределах нормы (36,60 ). При нарушении этого равновесия развивается лихорадка.

По своему происхождению лихорадка бывает инфекционной и неинфекционной. Инфекционная лихорадка возникает при заболеваниях бактериальной и вирусной природы. Неинфекционная лихорадка встречается при стрессе, введении больших доз лекарственных препаратов (например, фенамина, фенацетина, кофеина), при патологических процессах и заболеваниях (кровоизлиянии в мозг, ожогах, инфаркте миокарда, аллергических реакциях).

Лихорадка

Инфекционная Неинфекционная

Заболевания Эмоциональ- Лекарствен- При соматических

бактериальной ная ная заболеваниях

и вирусной

природы

большие дозы кровоизлияния в мозг,

фенамина, фена- инфаркт миокарда, ожоги,

цетина, кофеина аллергические реакции

Этиология лихорадки

Чрезвычайные раздражители, которые вызывают развитие лихорадки, носят название пирогенов.

греч. pyros - огонь

Все пирогены делятся на экзопирогены и эндопирогены, по механизму действия - на первичные и вторичные. Первичные (экзопирогены) являются этиологическими, пусковыми, вторичные (эндопирогены) - патогенетическими.

Пирогены

Экзопирогены Эндопирогены

Лейкопирогены Продукты тканевого ПИК

распада

Экзопирогены чаще бывают бактериального происхождения и представляют собой липополисахариды. Это высокомолекулярные соединения. Действующим, активным началом экзопирогенов является липоид А. Из бактерий получен искуцсственный пироген - пирогенал.

Эндопирогены представлены продуктами распада тканей и лейкопирогенами. Лейкопирогены - низкомолекулярные пептиды, образуются под влиянием экзопирогенов. К эндопирогенам относится патоиммунный комплекс (ПИК). Основную роль в развитии лихорадки играют лейкопирогены. Они способны перестраивать регуляцию теплового обмена на более высоком, установочном уровне.

Стадии лихорадки

Существует 3 стадии развития лихорадки:

I. Стадия повышения температуры

II. Стадия стояния высокой температуры

III. Стадия снижения температуры

В основе этих стадий лежит перестройка процессов терморегуляции. В I стадии увеличиваются процессы теплопродукции и уменьшаются процессы теплоотдачи. Температура повышается. Характерным симптомом этой стадии является озноб. Во II стадии эти процессы выравниваются на более высоком уровне, чем в норме. Симптомом II стадии является жар. В III стадии снижаются процессы теплообразования и преобладают процессы теплоотдачи. Основным симптомом этой стадии является испарина, потоотделение. Снижение температуры на III стадии может быть медленным, литическим (несколько часов, дней) или быстрым, критическим вследствие резкого расширения сосудов, что может привести к развитию коллапса (острой сосудистой недостаточности).

По степени повышения температуры лихорадка разделяется на субфебрильную (повышение температуры в пределах 37-380 С), умеренную (38-390 С), высокую (39-410 С) и гиперпиретическую (выше 410 С). В зависимости от характера колебаний суточной температуры во II стадии выделяют следующие виды лихорадки: 1) постоянную (febris continua) - колебания температуры не превышают 10 С (крупозная пневмония, брюшной и сыпной тиф), 2) послабляющую (febris remittens) - суточные колебания составляют 1,5-20 С (большинство вирусных и многих бактериальных инфекций), 3) перемежающую (febris intermittens) - суточные колебания температуры 2-30 С (малярия, гнойная инфекция, туберкулез), 4) изнуряющую (febris hectica) - суточные колебания температуры достигают 3-50 С (сепсис, перитонит, гнойная инфекция).

Механизмы развития лихорадки

Различают 4 механизма развития лихорадки:

1. Клеточно-молекулярный механизм

2. Рефлекторный механизм

3. Центральный механизм

4. Гуморальный механизм

Клеточно-молекулярный механизм

При участии этого механизма происходит накопление тепла в организме за счет увеличения теплопродукции. Увеличение теплопродукции происходит при окислении белков, жиров и углеводов в присутствии кислорода. Примерно 50% энергии образуется при выработке АТФ, а 50% - при свободном окислении

Пирогенал,

Кишечная палочка Несократительный Химические

АТФ термогенез реакции Вторичная

теплота

Сократительный Сокращение

термогенез мышц

Б, Ж, У + О2

Свободное окисление Первичная

Дифтерийный токсин, теплота

тироксин

Выработка АТФ происходит при окислительном фосфорилировании. Часть АТФ расходуется на химические реакции (осмотические реакции и другие) - на несократительный термогенез. Другая часть энергии АТФ расходуется на сократительный термогенез, сокращение мышц. В результате этих реакций образуется вторичная теплота.

Кроме вторичной теплоты, в повышении температуры участвует и первичная теплота. Она образуется в результате свободного окисления и интенсивно протекает в жировой ткани, в частности, при окислении бурого жира. Образование первичной и вторичной теплоты способствует повышению температуры, развитию лихорадки.

Образование первичной теплоты повышает потребность тканей в кислороде, что менее благоприятно для организма. При преимущественном образовании первичной теплоты может возникнуть дефицит кислорода. В условиях гипоксии образуются кислые метаболиты, которые нарушают функцию тканей и органов. Развивается тепловая альтерация тканей. Поэтому лихорадка с преобладанием первичной теплоты сопровождается интоксикацией. Это часто наблюдается у детей, у которых преобладают процессы химической терморегуляции, но может возникать и у взрослых, если лихорадочный процесс протекает длительно и с высокой температурой.

Существует ряд пирогенов, которые влияют на образование первичной или вторичной теплоты. Так, образование первичной теплоты активируется при воздействии дифтерийного токсина, тироксина. Тироксин вызывает разобщение окислительного фосфорилирования, при этом потребляется большое количество кислорода. На выработку вторичной теплоты большое влияние оказывает пирогенал, некоторые штаммы кишечной палочки.

Рефлекторные механизмы

В основе рефлекторного механизма лежит нарушение соотношения процессов теплопродукции и теплоотдачи. Разберем этот механизм с точки зрения стадий развития лихорадочного процесса.

В I стадии, стадии повышения температуры участвуют термочувствительные (холодовые и тепловые) рецепторы и нетермочувствительные (адренорецепторы и холинорецепторы). На этой стадии изменяется реактивность тепловых и холодовых рецепторов. Повышается активность холодовых рецепторов. Происходит это в результате рефлекторного спазма периферических артериол с участием a -адренорецепторов. Процессы теплоотдачи уменьшаются. Увеличивается различие температуры между внешней поверхностью организма (кожей) и внутренней средой. Это вызывает рефлекторное сокращение мышц (активируется сократительный термогенез), повышается теплообразование, возникает мышечная дрожь (озноб). Возникновению озноба и образованию вторичной теплоты способствует активация холинорецепторов (под влиянием ацетилхолина). Возбуждение b -адренорецепторов способствует окислению бурого жира и образованию первичной теплоты. Все это приводит к преобладанию процессов теплопродукции и повышению температуры.

Во II стадии повышается активность тепловых рецепторов. Происходит расширение артериол с участием b-адренорецепторов при воздействии адреналина, развивается гиперемия. II стадия характеризуется жаром. На этой стадии устанавливается новый уровень температуры по сравнению с исходным.

В III стадии снижается активность холодовых рецепторов, а активность тепловых рецепторов остается на высоком уровне. Угнетаются процессы теплообразования, активируется теплоотдача. Эта стадия характеризуется снижением температуры, усиливается потоотделение. На этой стадии затормаживаются вазоконстрикторы и преобладают b адренергические и холинергические реакции, которые способствуют расширению сосудов.

Центральный механизм

В основе этого механизма лежит перестройка функции терморегуляторного центра, который находится в заднем отделе гипоталамуса. Там же находятся тормозные вставочные нейроны, на которые воздействуют лейкопирогены. Под влиянием пирогенов меняется также реактивность холодовых и тепловых рецепторов ЦНС, происходит изменение соотношения процессов теплообразования и теплоотдачи в организме. При этом меняется реактивность тормозных вставочных нейронов, и установочный уровень температуры, который в исходном состоянии находился в пределах нормальных колебаний температуры (около 36,60 С), смещается на новый, более высокий установочный уровень. Таким образом, под влиянием пирогенов формируется новая установочная температурная точка. В развитии лихорадки по центральному механизму большую роль играет ретикулярная формация. Через ретикулярную формацию в ЦНС поступает информация с периферических адренорецепторов. В зависимости от функционального состояния ретикулярной формации (активация или угнетение) наблюдается развитие или торможение лихорадочного процесса. Большую роль в развитии лихорадки играет ЦНС. При возбуждении ЦНС при воздействии стресса развивается эмоциональная лихорадка.

Гуморальные механизмы

Это - эффекторное звено развития лихорадки. В патогенезе лихорадки играют роль гормоны, нейромедиаторы, биологические активные вещества, простагландины.

Простагландин Е1 (ПГ Е1 ) является посредником между пирогенами и тормозными вставочными нейронами. Это приводит к накоплению цАМФ, что формирует новый уровень терморегуляции.

Пироген ПГ Е1 цАМФ ТВН Лихорадка


Сейчас читают про: