Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Законы термодинамики




ТЕРМОДИНАМИКА

Термодинамиканаука о тепловых явлениях, в которой не учитывается молекулярное строение тел. Значительный вклад в развитие теорий тепловых явлений внесли Р. Клаузиус (1822-1888), Дж. Максвелл (1831-1879), Л. Больцман (1844-1906), У. Томпсон (1824-1907) и др. Все тепловые процессы связаны с превращением энергии, описание которых составляет одну из основных задач термодинамики. Для описания состояния тела в термодинамике используют следующие функции: температура, давление, объём, энтропия, а также термодинамические потенциалы. Фактор времени не интересует термодинамику, т.к. с её точки зрения молекулы самого разреженного газа когда-нибудь да столкнутся.

1. Закон сохранения и превращения энергии (первое начало термодинамики)

Во-первых, утверждает существование качественных видов энергии (потенциальной, кинетической, механической, тепловой, электромагнитной и т.д.) и присущую им способность при определенных условиях превращаться друг в друга; во-вторых, указывает, что в любых процессах, происходящих в замкнутых системах (т.е. системе, не обменивающейся ни веществом, ни энергией с окружающим миром), численное значение энергии остается постоянным во времени, т.е. невозможность ее исчезновения или возникновения.

Количественная формулировка первого начала термодинамики: количество теплоты (Q), сообщенное телу, идет на увеличение его внутренней энергии DU и на совершение телом работы А (Q = DU + А).

Потенциальная и кинетическая энергия переходят друг в друга при движении тел в поле силы тяжести, в колебательном движении тел, например, при колебании маятника. В двигателе внутреннего сгорания химическая энергия превращается в тепловую и кинетическую энергию.

Закон сохранения механической энергии проявляется при движении тел в поле тяжести, падении тел в поле тяжести, при упругом соударении тел, в свободном колебательном движении тел (движение маятника), аннигиляции.

Если закон сохранения энергии выполняется во всех химических процессах, во всех явлениях природы, то закон сохранения иногда выполняется точно, а иногда приблизительно. Например, в химии масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции. Однако в физике, электрон и позитрон, каждый из которых обладает массой, могут аннигилировать в фотоны, не имеющие массы покоя.

В термоядерных реакциях выполняются закон сохранения электрического заряда, закон сохранения энергии, закон сохранения лептонного заряда, закон сохранения адронного заряда. Закон сохранения энергии и закон сохранения импульса регламентируют превращение вещества в поле и наоборот.

Первый закон термодинамики отрицает возможность вечного двигателя (perpetuum mobile) первого рода. Вечный двигатель первого рода предполагает работу без извлечения энергии из окружающей среды. Нельзя построить периодически действующую машину, которая бы совершала работу больше подводимой к ней извне энергии.




2. Закон рассеяния энергии.

Всякая система стремится перейти к состоянию термодинамического равновесия, в котором тела обладают одинаковыми температурами и давлением. Все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы. Это приводит нас ко второму началу термодинамики: тепло не может само собой переходить от холодных тел к более нагретым; или тепловая энергия равномерно распределяется между всеми телами, и всякие тепловые процессы в любой системе полностью прекращаются. Эго приводит к тепловой смерти системы. Данное утверждение справедливо для замкнутых систем. Этот закон характеризует рост энтропии во времени.

Из-за наличия сил трения часть энергии всегда уходит в тепло (или внутреннюю энергию) и перевести эту энергию обратно в более удобные для практического использования формы оказывается очень трудно. Поэтому вечный двигатель второго рода, работающий за счет энергии находящихся в тепловом равновесии тел маловероятен, т.к. необратимые макроскопические процессы очень сложно повернуть вспять. Вечный двигатель второго рода – это своеобразный «холодильник, не потребляющий, а вырабатывающий электроэнергию». В настоящее время на практике пока доказана только возможность осуществления агрегатов, собирающих энергию из окружающей среды. Так, в космонавтике, широко используются тепловые насосы, использующие тепловую энергию окружающего пространства.



Существует еще вечный двигатель третьего рода – механизм, демонстрирующий вечное движение при отсутствии трения. Механизмы, приближающиеся к идеальным уже также созданы, например, это – сверхпроводящие агрегаты, сверхтекучие жидкости и т.д. Таким образом, только вечные двигатели 1-го рода не созданы и не используются в технике. Можно предположить, что заявленные «успешные» вечные двигатели 1-го рода на самом деле являются лишь скрытыми двигателями 2-го рода, источник получения, перекачки энергии которого – неизвестен. Хотя двигатели 2 и 3 рода успешно апробированы, сам термин «перпетуум мобиле» на практике до сих пор используется как «неосуществимый» или «бредовый», т.к., во-первых, ничего не берется ниоткуда, во вторых, все, что имеет начало – имеет конец, понятие «вечный» в данном контексте понимается весьма условно.

Мировые технические корпорации борются с энтропией путем повышения КПД. Если для двигателя считается 70 % очень хорошим КПД, итальянский экономист Вильфредо Паретто в 1897 году сформулировал правило эффективности человека, согласно которому 20% усилий приносят 80% результата.

Второе начало термодинамики указывает на существование двух различных форм энергии – теплоты (связанной с неупорядоченным движением) и работы (связанной с упорядоченным движением). Неупорядоченную форму энергии невозможно полностью перевести в упорядоченную форму энергии. Мерой неупорядоченности в термодинамике является энтропия. Энтропия (мера рассеяния энергии) – это функция состояния системы, характеризующая направление протекания самопроизвольных процессов в замкнутой системе. В замкнутой системе энтропия стремится к максимуму.

Направление тепловых процессов определяется законом возрастания энтропии: энтропия замкнутой системы может только возрастать; максимальное значение энтропии замкнутой системы достигается в равновесии: DS ≥ 0 (где S – энтропия). Приведенное утверждение считается количественной формулировкой второго закона термодинамики.

Второе начало термодинамики устанавливает наличие в природе фундаментальной асимметрии (однонаправленность всех самопроизвольных процессов).

Так в середине XIX в. закон сохранения и превращения энергии приобрел права всеоб­щего закона природы, объеди­няющего живую и неживую природу. Первое начало термоди­намики кратко формулируют так: «Энергия сохраняется», или: «Тепло, полученное систе­мой, идет на приращение ее внутренней энергии и на произ­водство внешней работы». То, что именно энергия сохраняет­ся, а не теплота, стало одним из основных научных достижений. Понятие энергии позволило рас­сматривать все явления природы и процессы с единой точки зре­ния, объединить все явления.

Впервые в науке абстрактное по­нятие заняло центральное место, оно пришло вместо ньютоновой силы, соответствующе чему-то ося­заемому, конкретному, хотя и облаченному Ньютоном в математи­ческие одежды. Понятие энергии прочно вошло в нашу жизнь. Ему нет единого определения, но чаще всего под энергией понимают способность тела совершать работу. В середи­не прошлого века лорд Кельвин признал, что силы могут исчезать и возникать, а энергия не уничтожается. Это понятие соответствовало и религиозным взглядам Кальвина, он считал, что Творец в самый момент творения мира наделил его за­пасом энергии, и этот божественный дар будет существовать вечно, тогда как эфемерные силы подвержены многим превратностям, и с их помощью в мире ткет­ся ткань явлений преходящих.

Современная наука не отвергает взгляды Кельви­на, но не отрицает и существования атомов как носителей энергии. Первое начало требует сохранения энергии изолированной систе­мы, но не указывает направления, в котором процессы могут про­исходить в природе. Это направление указывается вторым началом, вторым постулатом термодинамики. Совместно с первым они позво­ляют установить множество точных количественных соотношений между различными макроскопическими параметрами тел в состояни­ях термодинамического равновесия или около него. Кроме того, вто­рой постулат вводит определенность температурной шкалы, не свя­занную с рабочим веществом термометра и его устройством.

Из-за энтропии трагедия большой истории состоит не в том, что какие-то плохие, корыстные и глупые люди толкают человечество в нежелательном направлении, а в том, что оно двигается в этом направлении вопреки воле и желаниям хороших, бескорыстных и умных людей.

3. Третье начало термодинамики

Касается свойств веществ при низких температурах и утверждает невозможность охлаждения вещества до -273° С (температура абсолютного нуля).

Абсолютно низкую температуру, предсказал еще М. Ломоносов, первый исследователь низких температур. Северный ученый впервые сумел заморозить ртуть и искусственно получить очень низкую температуру (-65° С).

Закон в формулировке Планка гласит, что энтропия идеального кристалла при абсолютном нуле равна нулю. На самом деле невозможно непосредственно измерить абсолютную величину энтропии. В настоящее время с использованием лазерного охлаждения атомов добиваются охлаждения – 10 -7 10-9 К.

Термодинамика, основанная на трех началах и не требующая детального знания о строении вещества, дает представления об основных закономерностях бытия большого числа природных систем: к свойствам газов, жидкостей и твердых тел, к химическим реакциям, к магнитным и электрическим явлениям. Они приложимы к грандиозным космическим процессам и даже явлениям социальной жизни. Ее выводы неоспоримы и незыблемы.

Грядущий кризис энергоносителей заставляет уже сейчас искать новые способы получения и направления энергии. Коренным вопросом будущего является переход от энергии потребления к энергии дарения. Энергия потребления подчиняется законам термодинамики: ничто ниоткуда не берется, за все нужно платить. Поэтому отношения должны быть основаны на расчете. Так мы приходим к точке «замерзания» человеческих отношений. Энергетика будущего должна быть основана на заботе и любви. Ее парадоксальная характеристика такова, что чем больше мы отдаем, тем больше получаем.





Дата добавления: 2014-02-05; просмотров: 20853; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась - это был конец пары: "Что-то тут концом пахнет". 8491 - | 8078 - или читать все...

Читайте также:

 

34.237.51.159 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.