double arrow

Использование эконометрических моделей в прогнозировании социально-экономических процессов

1

Снятие условия полной независимости процесса приращений цен приводит к третьей версии ГСБ - ГСБ-3, согласно которой автокор­реляционные связи между приростами отсутствуют, однако автокор­реляция между их степенями может иметь место.

.

Существуют по крайней мере две причины, по которым финансо­вая эконометрика часто отдает предпочтение временным рядам дохо­дов по сравнению с рядами цен. Во-первых, есть основание предпола­гать, что для инвесторов финансовые рынки представляются доста­точно совершенными механизмами в том смысле, что уровень цен на них не зависит от размера инвестиций. В такой ситуации привлека­тельность вложений капитала не зависит от вида товара и вследствие этого определяется величиной дохода, а не уровнем его цены. Во-вторых, свойства временных рядов доходов, как правило, предпочтительнее с точки зрения статистики. Им, например, в боль­шей мере присуща стационарность, чем рядам цен.

Однако взаимосвязи между однопериодными доходами и доходом за объединенный период, выраженные произведением, также не очень удобны с точки зрения статистического анализа. В частности, усреднен­ный за периодов доход в этом случае рассчитывается как среднегеомет­рическое значение.

Вместе с тем математическая статистика и эконометрика в большей степени оперирует среднеарифметическими показателями. Такую воз­можность представляет использование логарифмов доходов, которые называют «непрерывно составными доходами».

Различные классы моделей финансовой эконометрики базируются на характерных для наблюдаемого временного ряда определенного финансового показателя, в качестве которого могут выступать непосредственно цены, доходы (чистые, валовые, логарифмические), а также их приросты, ошибки моделей и некоторые другие характеристики. Примером этих характери­стик могут являться также и функциональные преобразования финансовых показателей, например, линейные и степенные функции от них. Значительная часть таких взаимосвязей может быть определена общим выражением, означающим отсутствие автоковариационных свя­зей между временными рядами, образованными различными функцио­нальными преобразованиями рассматриваемого финансового показате­ля, следующего вида:

В этом выражении в качестве аргумента функций и выступает одна из перечисленных выше характеристик финансового показателя (це­на, какая-либо из ее производных, функция от цены или ее производной и т.п.), рассматриваемая в моменты t и соответственно. Данное выражение часто называют ортогональным условием. Различ­ные сочетания входящих в него функций соответствуют вполне опреде­ленным предпосылкам относительно характера взаимосвязей во времен­ном ряду финансового показателя (исходные гипотезы), которые и кла­дутся в основу описывающей этот ряд модели. Рассмотрим некоторыеизнаиболее известных предпосылок более подробно.

Одна из самых «старых» гипотез относительно взаимосвязей во временном ряду цен, лежащая в основе так называемой «мартингальной модели», предполагает отсутствие авто­корреляционных взаимосвязей между приростом цен при любых сдвигах.

Случайный процесс, характеризующий динамику цены в этом случае удовлетворяет следующему условию:

которое эквивалентно соответствующему условию для приростов цен

Последние выражения свидетельствуют о том, что условное мате­матическое ожидание цены в момент при известных ее значениях в периоды времени равно ее значению в момент , которое, в свою очередь, предопределено предшествующей динамикой этой цены или, что эквивалентно, условное математическое ожидание прироста цены за интервал при известной ее предыстории равно нулю и, таким образом, прирост цены не зависит от предшествующих уровней цен. Последнее допущение также означает, что любые (по величине лага) не пересекающиеся во времени приросты цен некоррелированы между собой, что предопределяет невозможность их предсказания с помощью линейных моделей временных рядов. Таким образом, «лучший прогноз» цены на дату - это ее уровень на дату.

Последние условия удовлетворяют предпосылкам так называемого «эффективного рынка», одна из важнейших среди которых свидетельствует о том, что текущая цена полностью предопределена информацией, содержащейся в ценах предыдущих периодов и не существует никакой другой информации, поступившей в период (), эксклюзивное владение которой позволяет участникам торговых сделок извлечь дополнительную прибыль. Следовательно, условное математическое ожидание прироста цены на ее предшествующие значения не может быть ни положительным, ни отрицательным, «обязано» быть равным нулю, и изменения цены являются абсолютно случайными и непредсказуемыми.

С точки зрения «ортогонального» условия предпосылки мартингальной модели означают, что функцияявляется линейной с аргументом, выражающим прирост цен в текущем периоде, а функция может быть любой по отношению к этому аргументу, рассматриваемому в предшествующие периоды. Кроме линейной функции прироста качестве может рассматриваться, например, любая степенней функция от этого аргумента, т.е.

Достаточно широкий класс моделей финансовой эконометрики базируется на предположении о том, что приросты цен эквивалентны случайному процессу по своим свойствам близкому к «белому шуму». Это предположение отражает сущность так называемой «гипотезы случайного блуждания» (ГСБ). В научной литературе описаны три версии этой гипотезы, которые отличаются друг от друга содержанием, вкладываемым в понятие «белого шума». Согласно первой версии этой гипотезы - ГСБ-1, разработанной еще в начале XX века, — случайные приросты финансового показателя (цены) и любые их функциональные преобразования незави­симы и удовлетворяют условию стационарности или, иначе, имеют идентичные условные распределения на уровни цен в прошедшие моменты времени. Таким образом, ГСБ-1 утверждает, что динамика приростов цены по своим свойствам соответствует процессу «стро­гого белого шума». Как правило, закон распределения приростов пред­полагается нормальным, в специальных случаях - стабиль­ным. От­каз от идентичности закона распределения приростов является ло­гичным развитием ГСБ-1, «смягчающим» ее достаточно строгие ог­раничения в отношении свойств приростов цены.

Предположение о независимости приростов цены и неидентично­сти их условных распределений выражает сущность второй версии ГСБ - ГСБ-2. В частном случае ГСБ-2 допускает случайные измере­ния значений рассматриваемого ряда. ГСБ-2, как ГСБ-1, предполагает, что как сами приросты, так и любые их функции независимы между собой. Они могут быть как линейными, так и степенными. ГСБ-2 была обоснована уже во второй половине XX века.

(4 часа)

Прогнозирование одна из основных сфер практического применения эконометрических моделей. Эконометрические прогнозные исследова­ния, начало которым было положено в конце 20-х годов XX столетия, уже через два-три десятилетия сформировались в самостоятельное на­правление в экономической науке. Попытки разработки прогнозов финансовых показателей на основе простейших типов моделей финансовой эконометрики предпринимались фактически с момента формирования финансовых рынков. Круг прогнозируемых процессов по­стоянно расширялся. В настоящее время эконометрические прогнозы разрабатываются практически для всех процессов, характеризующих раз­витие общества как на микро-, так и на мезо-, и макроуровнях его органи­зации. Самое широкое применение эконометрические модели находят в разработках прогнозов спроса и предложения, научно-технического про­гресса, финансов и цен, уровня жизни, производительности труда, вало­вого продукта, миграции, занятости и многих других явлений.

Термин «эконометрическое прогнозирование» обычно означает про­цедуру получения на основе эконометрических моделей некоторых ха­рактеристик зависимого процесса у (совокупности зависимых процес­сов), относящихся к следующим за моментом (последней точкой пе­риода наблюдения) моментам . Для «типовой» эконометрической модели, состоящей из единственного уравнения, к числу важней­ших таких характеристик относятся непосредственно прогнозные значения зависимой переменной , ,… (точечные прогнозы) и показа­тели их точности - обычно дисперсии прогнозов ,…, доверительные интервалы, в которых с заданной вероятностью будут нахо­диться «истинные» значения рассматриваемого процесса , ,…(ин­тервальные прогнозы).

В этой связи следует отметить, что развитие эконометрических про­гнозных исследований в значительной степени было обусловлено именно относительной простотой процедур разработки прогнозов, ясностью и определенностью использования их результатов в практике управления общественным развитием. В самом деле, для построенной на интервале времени (1,Т) эконометрической модели , с известными оценками коэффи­циентов и , … процедура определения точечных прогнозов , ,… сводится к подставлению в уравнение модели соответствующих прогнозным момен­там Т+1, Т+2,... значений независимых переменных , i =1, 2,..., п; и фак­тической ошибки , ,…Заметим, что для «типовой» линейной мо­дели для получения точечного прогноза в ее уравнение необходимо под­ставить значения независимых переменных , i =1, 2,..., п; выражаю­щих их уровни в этот же момент Т+1. В некоторых исследованиях, когда момент Т+1 относится к «будущему», эти уровни могут быть точно не из­вестными. Они могут определяться по результатам других прогнозных разработок, отражать какие-либо гипотезы, выдвигаемые в отношении характера развития независимых переменных. Если ошибка модели удов­летворяет стандартным для нее предположениям (равенство нулю мате­матического ожидания, отсутствие автокорреляционных связей и т.д.), то точечный прогноз в этом случае определяется как оценка математическо­го ожидания значения у в точке Т+1 в предположении, что оценки коэф­фициентов и уровни факторов независимы, i =1,2,..., п.

Вместе с тем следует иметь в виду, что «высокое качество» про­гнозной эконометрической модели не является достаточной гарантией обоснованности эконометрических прогнозов, особенно в отдаленной перспективе. Дело в том, что в будущем тенденции развития рассмат­риваемых процессов, структура и сила взаимосвязей между ними могут существенно изменяться. Эти изменения могут носить эволюционный характер, накапливаясь постепенно, например, вследствие роста мас­штабов явлений. Они могут происходить и скачкообразно вслед за фи­нансовыми кризисами, революционными преобразованиями в обществе и т.п. При этом «удачная» для периода (1,Т) эконометрическая модель, как правило, не сможет учесть такие изменения, поскольку она по­строена на основе информации, отражающей иной характер взаимо­связей между рассматриваемыми явлениями, имевший место в про­шлом. В некоторых случаях обоснованность и достоверность эконометриче­ских прогнозов могут быть повышены путем либо корректировки самих результатов формальной экстраполяции, т.е. «предварительных» прогнозных значений , ,…, полученных непосредственно с исполь­зованием построенной эконометрической модели, либо предварительной (до прогноза) корректировки самой модели, исходя из некоторых дополнительных сведений, предположений. Зачастую такие корректировки осуществляются на основе экспертной информации. В отношении этого американский экономист П. Самуэльсон заметил: «...почти все экономет­рики, за редким исключением, корректируют параметры моделей с по­мощью неформальных методов, считая, что это улучшает результат». Обосновывая необходимость уточнения «формальных» эконометрических прогнозов, другой американский экономист М. Уитмент пишет: «Использование эконометрических моделей позволяет опереться на кри­терии точных дисциплин и получить внутренне согласованные прогнозы. Однако сырые результаты модельных расчетов, так же как и их осново­полагающие предпосылки, должны быть подвергнуты тщательному экс­пертному анализу».

В такой ситуации при эконометрическом прогнозировании уместным яв­ляется вопрос о максимально возможной глубине прогнозного периода. Од­нозначного ответа на него дать невозможно. Очевидно, что чем более инер­ционным является рассматриваемый процесс, чем устойчивее его взаимосвя­зи, чем стабильнее ситуация в обществе, экономике, тем больше может быть и прогнозный период. В некоторых научных публикациях можно встретить рекомендации определять глубину эконометрического прогноза как 1/3 или 1/2 от величины оценочного периода, т.е. как 1/3Т, 1/2Т. Обзор эконометрических прогнозных исследований свидетельству­ет, что многофакторные эконометрические модели, как правило, ис­пользуются при разработке так называемых краткосрочных, и в крайнем случае, среднесрочных прогнозов. Для многих реальных соци­ально-экономических процессов (спрос, производительность труда, выпуск продукции и т.п.) такие прогнозы разрабатываются на 5-10 временных точек (кварталов, лет - в зависимости от длины интервала ). Эти рекомендации не относятся к прогнозам финансовых показате­лей, которые разрабатываются на основе моделей финансовой эконо­метрики. «Финансовые» прогнозы являются, как правило, краткосроч­ными (на один, два шага вперед), в то время как модели финансовой эконометрики формируются на основе достаточно длинных временных рядов исходных данных. Это связано с тем, что практически всегда имеется возможность получить «свежую» информацию о текущем уровне рассматриваемого процесса (данные с финансовых рынков становятся доступными без задержки), и на ее основе скорректировать построенную модель. Достаточно очевидны и выводы, следствия, которые могут быть полу­чены из эконометрических прогнозов, например в сфере управления. В этой связи заметим, что эконометрические прогнозы разрабатываются для оценки будущих состояний рассматриваемого процесса в зависимо­сти от ожидаемых уровней влияющих на него факторов. При этом, в общем случае факторы можно разделить на три группы: управляемые, неуправляемые и частично управляемые.

Если прогноз разрабатывается на основе неуправляемых факторов (погодные условия, состояние мировой экономики и т.п.), то и сам про­цесс является неуправляемым. Прогнозы таких процессов часто называют поисковыми (исследовательскими). В этом случае система управления имеет возможность только приспособиться к его тенденциям прогнози­руемого процесса, учесть их при обосновании управляющих мер для со­ответствующего объекта. Если факторы являются управляемыми, то система управления может сознательно выбирать, формировать их уровни, определяя тем самым наиболее рациональную, «оптимальную» для объекта тенденцию разви­тия процесса в прогнозном периоде. Такие прогнозы обычно называют нормативными. При частично управляемых факторах возможности регулирования развития процесса в прогнозный период являются ограниченными. На­пример, из-за того, что в моделях присутствуют факторы обеих групп. Часто эти ограничения обусловлены имеющимися ресурсами (финансо­выми, трудовыми, сырьевыми и т.п.).

В случае управляемых и частично управляемых факторов заметим, что эконометрические модели предоставляют исследователю фактически всю информацию относительно границ управления (диапазонов изменения факторов), эффективности их использования в управлении. При этом по­казатель эффективности в некоторой степени может быть определен на основании значений коэффициентов эластичности переменной у по фак­торам хi (в части определения реакции у на изменения хi ). Другие составляющие эффективности (стоимость затрат на реали­зацию управления, результаты, выгоды, к которым оно приводит) вы­являются на основе экономического анализа рассматриваемой пробле­мы.

В связи с проблемой управления также заметим, что эконометриче­ские модели достаточно часто используются в разработках так называемых «прогнозов-предупреждений». Результаты таких прогнозов являются нежелательными для объекта, и реакция системы управле­ния в этом случае состоит в определении мер, способных внести не­обходимые коррективы в тенденции развития процесса у, в рассмат­риваемый период. Эти меры в данном случае выражаются в виде необ­ходимых приростов независимых управляемых факторов.

Одной из важнейших характеристик качества прогноза является вели­чина его доверительного интервала. Очевидно, что при прочих равных условиях чем уже этот интервал, тем более обоснованным представляется и сам прогноз, и мероприятия по управлению рассматриваемым процес­сом.

В общем случае можно указать на два взаимодополняющих подхода к оценке доверительного интервала прогноза - эвристический и формаль­ный. По своей сути эвристический подход предполагает расчет размера доверительного интервала как разницы между двумя возможными «экс­тремальными» значениями прогнозов переменной у полученными при подстановке в уравнение эконометрической модели определяющих их «экстремальных» значений факторов. Часто такие значения и соответст­вующие им прогнозы называют «пессимистическим» и «оптимистическим»:

где и - оптимисти­ческие и пессимистические значения независимых факторов. Тогда ши­рина доверительного интервала прогноза определяется как разность . Заметим, что рассчитанный таким образом «эвристический» довери­тельный интервал в большей степени характеризует возможный разброс прогнозируемого значения процесса в зависимости от разброса прогноз­ного фона, в свою очередь вызванного неопределенностью оценок его значений в перспективе. Формальный подход к оценке ширины доверительного интервала про­гноза предполагает расчет этой характеристики с использованием мето­дов математической статистики. Для этого необходимо оценить диспер­сию ошибки прогноза.

В общем случае ошибка эконометрического прогноза может быть оп­ределена как разность между фактическим значением рассматриваемого показателя в некоторый момент времени в будущем, которое, вообще говоря, неизвестно, и его значением , k = 1,2,…: . При этом предполагается, что ошибка прогноза обладает следующими двумя свойствами: 1) несмещенности, что означает, что прогноз является несмещенной оценкой истинного значения ; 2) эффективности, т.е. дисперсия ошибки является минимальной среди дисперсий всех других возможных прогнозов, построенных с использованием данного эконометрического уравнения.

Далее, в предположении, что ошибка прогноза распределена со­гласно закону нормального распределения, доверительный интервал для истинного значения прогноза может быть определен согласно следующе­му известному выражению:

где - табличная константа, полученная для стандартизованного нор­мального распределения N(0,1) при заданном уровне доверительной ве­роятности. Напомним, например, для =0,95 =1,96.

Таким образом, при определении ширины доверительного интервала эконометрического прогноза с использованием формального подхода ос­новной проблемой является оценка дисперсии рассчитанного прогнозно­го значения рассматриваемого процесса. В общем случае такая оценка может быть получена, основываясь на информации, характеризующей степень неопределенности как в инстру­ментарии прогнозирования (модели), так и в исходных данных - про­гнозном фоне. Эта неопределенность обычно выражается характеристи­ками соответствующих ошибок. Так, неопределенность модели определя­ется ошибками ее параметров, характеристики которых заданы в виде их ковариационной матрицы - Соv(а)).

В отношении прогнозного фона на практике обычно рассматривают два возможных варианта его неопределенности. Согласно первому из них прогнозный фон рассматривается как набор детерминированных показа­телей, т.е. предполагается, что значения независимых переменных опре­делены точно с нулевой ошибкой. Такая ситуация возможна при разра­ботке некоторых безусловных прогнозов, например, на основе моделей с лаговыми зависимыми переменными. Однако в большинстве случаев прогнозный фон нельзя считать детерминирован­ным. В самом деле, для моделей авторегрессии, в частности, детерминированный эндогенный прогнозный фон имеет место, только при разработке прогноза на момент Т+1. Значение , используемое в расчете следующего прогнозного значения , уже определено. Аналогично нет никаких гарантий, что и при экзогенном прогнозном фоне значения факторов , i =1, 2,..., п, k = 1,2, …, относящиеся к буду­щим моментам времени, определены абсолютно точно. Обычно эти зна­чения также получают в ходе каких-либо прогнозных исследований (на­пример, с использованием методов экспертного прогнозирования). В та­ких случаях обычно оцениваются и соответствующие характеристики ошибки их прогнозов.

1

Сейчас читают про: