double arrow

Регулирование частоты вращения изменением подводимого напряжения


Регулирование частоты вращения изменением подводимого напряжения производится следующими способами:

А) Система генератор-двигатель (Г-Д).

Б) Тиристорный преобразователь-двигатель (ТП-Д).

В) Широтно-импульсное регулирование.

А) Система Г-Д, рис.234.

 
 

Увеличивая ток возбуждения генератора iвг, возрастает поток Фг и Ег, а следовательно увеличивается напряжение на якоре двигателя и скорость возрастает. Регулирование происходит плавно при малых потерях энергии, рис. 234.

Эта система используется при большой мощности двигателя (подъёмники, прокатные станы, экскаваторы и т.д).

Б) Тиристорный преобразователь-двигатель.

В системе Г-Д используется большое число машин, что увеличивает стоимость установки и снижает надежность.

 
 

Поэтому в последнее время для регулируемого напряжения все чаще используются статические преобразователи, рис.235.

Увеличивая угол управления - площадь полупериода уменьшается, уменьшается среднее значение напряжения - Uср, а следовательно уменьшается скорость вращения.

В) Широтно-импульсное регулирование.

 
Идея регулирования напряжения подводимого к двигателю заключается в том, что, изменяя длительность подключения двигателя ключом (К) к сети, изменяется среднее значение напряжения, рис. 236. В качестве ключа используются схемы на базе тиристоров или транзисторов.

Изменяя время импульса tи изменяется скважность ,

где tи - время импульса;

tп - время паузы.

Рис. 236
Среднее значение Uср=U0e.

.

Как видим, изменяя среднее значение напряжения, можно регулировать частоту вращения двигателя. Эта система широко используется вместо контактарно-резисторных систем.

4-7. Коммутация в машинах постоянного тока.

При вращении якоря щетка попеременно замыкает секции якоря и в этой секции происходит изменение направления тока. А сама секция передается в другую параллельную ветвь, рис.237. Ток в секции меняется только под щеткой. Дадим определение коммутации:

Коммутацией называется процесс изменения направления тока в секции при переходе ее из одной параллельной ветви в другую.

Рис. 237.

Рис. 238
 
 

ia
ia
При коммутации под щетками происходит очень сложный процесс, этот процесс протекает быстро (10-2 ¸10-5 сек.) и на него влияет много факторов. Мы будем исходить из классической теории коммутации. Разберем коммутацию в узком смысле, возьмем одну секцию и ширину щетки равную ширине коллекторной пластины.

На рис. 238 еще раз показан процесс коммутации. При положении щетки на пластине (1) ток в секции протекает по часовой стрелке, и секция относится к правой параллельной ветви. Затем при вращении якоря секция щеткой будет закорочена. В конце коммутации щетка будет расположена на пластине (2). Ток в секции сменит направление, и она перейдет в левую параллельную ветвь (показано пунктиром).

Процесс коммутации длится всего тысячные доли секунды. Такое быстрое изменение направления тока вызывает многие неприятности, в частности, искрение на коллекторе.

Искрение гостируется в специальной таблице:

Степень искрения: 1 - отсутствие искрения.

1- слабое точечное искрение под небольшой частью щетки.

1- слабое точечное искрение под большей частью щетки.

2 – искрение под всем краем щетки.

3 – значительное искрение под всем краем щетки с наличием крупных искр.

При нормальной коммутации степень искрения не должна превышать 1.

Искрение определяется не только неудовлетворительной коммутацией, а также определяется механическими причинами, потенциальными неравномерностями. Механическое искрение определяется некачественной щеткой, при плохой обработке и

т. д.

При изучении коммутации будем исходить из двух положений:

1. Будем считать, что контактная поверхность щетки проводит ток равномерно.

2. Удельное сопротивление контакта (переходное сопротивление единицы площади), будем принимать постоянным и не зависимым от плотности тока.


Сейчас читают про: