double arrow

Научные основы анализа поступлений налогов и сборов в бюджетную систему страны

Тема 3. Методы анализа поступлений налогов и сборов в бюджетную систему страны.

3.1. Научные основы анализа поступлений налогов и сборов в бюджетную систему страны.

3.2. Анализ налоговых поступлений в бюджетную систему страны.

3.3 Методика анализа поступлений налогов и сборов по отдельным видам налогов.

3.4. Методика анализа задолженности по налогам и сборам.

Для разработки прогнозов определенный интерес представляют данные о развитии объекта в течение времени. Задача состоит в изучении таких данных и последующем применении полученных результатов с использованием математических методов прогнозирования.

Временной ряд представляет собой совокупность последовательных измерений показателя, произведенных через одинаковые интервалы времени.

Временной (или динамический) ряд — это упорядоченная во времени совокупность измерений одной из характеристик исследуемого объекта (Yt), где t — порядковый номер анализируемого объекта.

Временные ряды отличаются от простых статистических выборок в фиксированный момент времени следующими признаками:

- последовательные во времени показатели временных рядов являются взаимозависимыми, особенно это относится к близкорасположенным наблюдениям;

- в зависимости от момента наблюдения показатели временного ряда обладают разной информативностью: информационная ценность наблюдений убывает по мере их удаления от текущего момента времени;

- с увеличением количества показателей временного ряда точность статистических характеристик не будет увеличиваться пропорционально числу наблюдений, а при появлении новых закономерностей развития она может даже уменьшаться.

В зависимости от того, отражают ли элементы временного ряда состояние объекта за определенный промежуток времени или фиксируют в строго установленные моменты, различают интервальные и моментные ряды. Они могут задаваться в табличной или графической форме.

Интервальный временной ряд — это совокупность показателей, каждый из которых характеризует развитие объекта исследования за определенный период времени (год, квартал, месяц и т.п.).

Моментный временной ряд — это совокупность показателей, характеризующих состояние объекта на определенную дату, например, на первре число каждого месяца, первое января каждого года и т.п.

В зависимости от способа построения исследуемых характеристик возможно построение временных рядов, состоящих из абсолютных, относительных и средних величин. Относительные уровни можно получить делением абсолютных или средних значений на один и тот же элемент ряда, принятый за базу. Возможно также получение относительных величин при сравнении каждого значения показателей временного ряда с предыдущим. Выбор вида ряда определяется задачами прогноза.

Анализ временных рядов позволяет решать следующие задачи:

- исследовать структуру временного ряда, включающую, как правило, тренд — закономерные изменения среднего уровня, а также случайные периодические колебания;

- исследовать причинно-следственные взаимосвязи между процессами, проявляющиеся в виде корреляционных связей между временными рядами;

- построить математическую модель процесса, представленного временным рядом;

- прогнозировать будущее развитие процесса;

- преобразовать временной ряд средствами сглаживания и фильтрации.

Значительная часть известных методов предназначена для анализа стационарных процессов, статистические свойства которых (характеризуемые в случае нормального распределения средним значением и дисперсией) не меняются с течением времени.

При анализе поступления налогов и сборов в бюджетную систему страны наиболее широко применяется обобщение средних характеристик временного ряда в ретроспективном периоде. Эти характеристики представляют собой выражение динамики за весь период одним средним числом. К средним характеристикам динамики относятся:

- средний уровень ряда или средняя хронологическая;

- средний абсолютный прирост;

- средний темп роста;

- средний темп прироста.

Средний уровень ряда показывает, какая средняя величина уровня характерна для всего анализируемого периода. К его расчету прибегают для рядов, состояние или изменение которых стабильно в течение большого периода времени, и рядов с уровнями, колеблющимися в короткие промежутки времени. Показатель рассчитывается различно для интервальных и моментных рядов.

Для интервального ряда сумма значений фактических показателей временного ряда делится на число показателей:

Y1 + Y2 + . . . + Yn

Yср = -----------------------------------

n

Для моментного ряда расчет осуществляется по формуле:

0,5Y1 + Y2 + Y3 + . . . + 0,5Yn

Yср = ----------------------------------------

n - 1

Следует учесть, что значения первого и последнего показателей временного ряда берутся в половинном размере, поэтому в знаменателе количество показателей уменьшается на единицу.

Средний абсолютный прирост ряда показывает скорость развития явления и рассчитывается по формуле:

Yn - Y1

Yпр = -----------------

n - 1

где: Y1 - первый зарегистрированный показатель временного ряда;

Yn - последний зарегистрированный показатель временного ряда;

n - число показателей временного ряда.

Средний темп роста может быть рассчитан по формуле средней геометрической. При сравнении последнего показателя временного ряда с первым расчет осуществляется по формуле:

Тр = (Yn : Y1)1: (n - 1)

Средний темп прироста определяется по формуле:

Тпр = Тр - 1

Кроме того, применяется показатель скользящего среднего.

Скользящее среднее порядка k — это среднее значение k последовательных наблюдений:

(Yt + Yt - 1 + Yt - 2 + . . . + Yt – k + 1)

Yср = ----------------------------------------------

k

где: Yt - значение исследуемой характеристики в текущем периоде;

Yt - 1 ; Yt - 2 ; Yt - k + 1 - значения исследуемой характеристики в предыдущих периодах по убыванию;

t - количество измерений;

k - количество наблюдений в скользящем среднем.

Для расчета используются результаты не всех наблюдений, а определенного количества последних. Как только новое наблюдение становится доступным, его результат включается в расчетную формулу, а результат наиболее старого наблюдения исключается.


Сейчас читают про: