Судьба мутантного аллеля в популяциях диплобионтов

Диплобионты – это диплоидные организмы, к которым относятся все животные, а также растения и грибы в диплоидной фазе. В простейших эволюционных моделях анализируются популяции, близкие к идеальным (бесконечно большие, стационарные, амфимиктические, панмиктические). У диплобионтов каждый ген представлен двумя аллелями, которые различным образом взаимодействуют между собой.

1. Рецессивные аутосомные мутации. Практически не имеют шансов проявиться в фенотипе. Вероятность встречи мутантных аллелей равна квадрату вероятности (или частоты) мутирования данного гена – q2 (aa). В среднем, вероятность образования новой рецессивной гомозиготы колеблется от (10–5)2 = 10–10 до (10–6)2 = 10–12. Иначе говоря, вероятность фенотипического проявления мутантного рецессивного аллеля не превышает одного шанса из десяти миллиардов.

У носителей рецессивной мутации (гетерозигот Аа) мутантный аллель а не проявляется в фенотипе и не подвергается действию естественного отбора. В стационарной популяции этот аллель может совершенно случайно не перейти в следующее поколение.

Это связано с тем, что вероятность утраты мутантного аллеля L зависит от числа потомков N в семье: L =1 при N =0; L =1/2 при N =1; L =1/4 при N =2; L =1/8 при N =3; L =(1/2) X при N = X. Средняя плодовитость пары особей равна 2 потомкам, достигшим репродуктивного возраста, но фактическая плодовитость изменяется от 0 до Х. Если фактическая плодовитость пары велика, то велика и вероятность передачи мутации в хотя бы одному потомку. Если же плодовитость снижена (или равна 0), то снижена (или равна 0) и вероятность сохранения мутации.

Расчеты показывают, что из 100 новых мутаций в каждом последующем поколении сохранится только их часть:

Поколения                            
Число сохранившихся мутаций                            

Таким образом, под воздействием совершенно случайных факторов мутантный аллель постепенно исчезает (элиминируется) из популяции.

Кроме того, подавляющее большинство аутосомно-рецессивных мутаций в гомозиготном состоянии значительно снижает приспособленность организмов. Поэтому некоторые эволюционисты считают, что рецессивные мутации вообще не могут играть заметной роли в эволюции; это ошибки, которые снижают приспособленность особей и среднюю приспособленность популяции.

2. Рецессивные мутации, сцепленные с полом. Такие мутации сразу проявляются у гетерогаметного пола. У человека такие мутации приводят к развитию тяжелых заболеваний: гемофилии (А и В), мышечной дистрофии Дюшена. Примеры подобных мутаций, имеющих адаптивное значение, нам неизвестны.

3. Мутантный аллель доминирует над исходным (аА). Доминантная мутация сразу проявляется в фенотипе и подвергается действию естественного отбора. Эти типы мутаций встречаются в 1000 раз реже, чем рецессивные, практически все они летальны или полулетальны; примеры таких мутаций у человека: поликистоз почек, нейрофиброматоз, множественный полипоз толстой кишки. Однако некоторые доминантные мутации могут проявляться как преадаптации; адаптивное значение может иметь черная окраска насекомых (например, у березовой пяденицы), а также позвоночных. В этом случае отбор действует подобно механическому ситу и отбирает уже готовые варианты – преадаптации.

4. Мутантный аллель проявляет сверхдоминирование, частичное доминирование или кодоминирование по отношению к исходному. В данном случае мутация также сразу проявляется в фенотипе и подвергается действию отбора. Некоторые полудоминантные мутации могут иметь адаптивное значение, например, у человека полудоминантная мутация серповидноклеточной анемии в гетерозиготном состоянии обеспечивает устойчивость к малярии. В целом данная ситуация изучена недостаточно.

При анализе мутационного процесса у диплобионтов нужно учитывать явление множественного аллелизма. Один и тот же ген мутирует различным образом, что приводит к существованию в популяции серий множественных аллелей (например, а 1, а 2, а 3 и т.д.). Эти аллели могут встретиться в компаунд-гетерозиготе (например, а 1 а 2). Тогда между разными мутантными аллелями возможны все типы перечисленных выше взаимодействий. Особый случай представляет возникновение разных мутаций с одинаковым фенотипическим эффектом (например, а 1 а 1= а 2 а 2= а 1 а 2).

Судьба мутантного аллеля в популяциях гаплобионтов и полиплоидов

К гаплобионтам относятся все прокариоты; водоросли и грибы в гаплоидной фазе; половые клетки животных. У многих таких организмов половое размножение отсутствует.

У гаплобионтов мутантный аллель обычно сразу проявляется в фенотипе и подвергается действию естественного отбора. В этом случае отбор действует подобно механическому ситу. В результате некоторые мутации сразу же приобретают адаптивный характер, например, у бактерий появляется устойчивость к лекарственным препаратам (тетрациклину, пенициллину и др.).

Однако довольно часто у гаплоидов наблюдается многократное дублирование (амплификация) одного и того же гена, что позволяет мутантным аллелям находиться в квазигетерозиготном состоянии. В этом случае рецессивная мутация может не проявиться в фенотипе, что делает ее недоступной для действия естественного отбора.

К полиплоидам относятся многие растения и некоторые животные. У автополиплоидов наблюдаются те же закономерности, что и у диплоидов, но шансы на проявление в фенотипе рецессивных мутаций еще меньше. При частоте мутации 10–6 вероятность ее фенотипического проявления у тетраплоидов равна q4 (аааа) = 10–24.

Мутационный процесс дополняется некоторыми специальными механизмами, способствующими сохранению мутаций или изменению экспрессии мутантных аллелей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: