Рациональный выбор основной системы. Использование свойств симметрии при раскрытии статической неопределимости

Рациональной основной системой для статически неопределимой конструкции является такая система, при которой наибольшее число побочных коэффициентов обращаются в нуль. Если рассматривается симметричная в геометрическом отношении рама, то появляется возможность упрощения решения задачи раскрытия статической неопределимости за счет снижения числа неизвестных силовых факторов Х1, Х2, Х3,..., Хn. Такое упрощение обусловлено тем, что внутренние силовые факторы можно разделить на симметричные и кососимметричные (рис. 8.10).

Рисунок 8.10

К симметричным силовым факторам относятся изгибающие моменты Mz, My и нормальная сила N, так как в двух смежных сечениях они симметричны относительно плоскости разреза. К кососимметричным силовым факторам относятся перерезывающие силы Qy, Qz и крутящий момент Mx, поскольку они равны по величине, но противоположны по направлению относительно плоскости разреза.

Рассмотрим случаи нагружения симметричной рамы симметричной и косо-симметричной нагрузками. Под симметричной нагрузкой будем понимать такую нагрузку, при которой все внешние силы, приложенные к части рамы, лежащей по одну сторону от оси симметрии, являются зеркальным отображением сил, приложенных к другой части лежащей по другую сторону от оси симметрии. Под кососимметричной нагрузкой будем понимать такую нагрузку, при которой силы, приложенные к части рамы, лежащей по одну сторону от оси симметрии, являются зеркальным отображением сил, приложенных к другой части лежащей по другую сторону от оси симметрии, но противоположны друг другу по знаку.

Рассмотрим вначале особенности симметричных плоских стержневых систем. Вследствие полной симметрии такая система имеет симметричный вид, и после деформирования. Следовательно, перемещения симметричных сечений равны по величине и симметричны по направлению. Это означает, что в симметричных сечениях одноименные силовые факторы (а в опорных сечениях ‑ опорные реакции) равны по величине и симметричны по направлению. Таким образом, в сечении по оси симметрии возможны только симметричные силовые факторы Mz, N. Итак, основную систему для симметричной рамы надо выбирать путем удаления лишних связей в сечении по оси симметрии и следить за тем, чтобы эквивалентная система была симметричной (рис. 8.11).

Рисунок 8.11

Если в стержневой системе имеется стержень, лежащий вдоль оси симметрии, то основную систему надо выбирать путем удаления лишних связей в симметричных сечениях.

Рассмотрим теперь особенности кососимметричных плоских стержневых систем. Для такой системы перемещения симметричных сечений и одноименные силовые факторы в них равны по величине и обратно симметричны по направлению. Это означает, что в сечении по оси симметрии возможны только кососимметричный силовой фактор Qy. Итак, основную систему для кососимметричной рамы также, как и для симметричной стержневой системы, надо выбирать путем удаления лишних связей в сечении по оси симметрии и следить за тем, чтобы эквивалентная система была кососимметричной (рис. 8.12).

Рисунок 8.12

Если нагрузка, приложенная к симметричной раме, не обладает свойствами ни прямой, ни косой симметрии, всегда имеется возможность разложить ее на кососимметричную и симметричную, как это показано, например, на рисунке 8.13.

Рисунок 8.13

Задача, таким образом, распадается на две. Рассматривается отдельно симметричная рама с кососимметричной нагрузкой и рама с симметричной нагрузкой. Внутренние силовые факторы в раме определяются в дальнейшем наложением полученных решений.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: