Разбиение множества на блоки по k элементов. Говорят, что семейство множеств {M1, ,Mk} является разбиением множества M на k блоков M1, ,Mk, если M1, ,Mk – непустые

Говорят, что семейство множеств { M 1,…, Mk } является разбиением множества M на k блоков M 1,…, Mk, если M 1,…, Mk – непустые, попарно не пересекающиеся, подмножества множества M и объединение множеств M 1,…, Mk есть множества M. Число (или S (n, k)) всех разбиений n -множества M на k блоков называется числом Стирлинга второго рода.

Пример. Перечислим все разбиения множества {1,2,3,4} на 2 блока:

{{1}, {2, 3,4}},

{{2}, {1, 3,4}},

{{3}, {1, 2,4}},

{{4}, {1, 2,3}},

{{1,2}, {3,4}},

{{1,3}, {2,4}},

{{1,4}, {2,3}}

Мы видим, что .

Приведем рекуррентные формулы для числа Стирлинга второго рода:

;

, где n >0;

, где n >0, 1£ k £ n.

Непосредственно число Стирлинга второго рода вычисляется по следующей формуле: .

k n                
                 
                 
                 
                 
                 
                 
                 
                 

Число всех разбиений n -множества M называется числом Белла Bn.

Ясно, что .

Примечание 1. Пусть | A |= m, | B |= n. Тогда число элементов:

· множества всех отображений множества A в B равно числу всех размещений с повторениями по m из n, то есть | BA |= nm;

· множества всех инъекций множества A в B равно числу всех размещений без повторений по m из n, то есть ;

· множества всех биекций множества A на B равно числу всех размещений без повторений по m из n, то есть n!;

· множества всех сюръекций множества A на B равно произведению числа всех перестановок n -множества B на число всех разбиений n -множества B на m блоков, то есть n!.

Любой многочлен от одной переменной можно представить как линейную сумму степеней переменной (базисных многочленов): , , , …

Примечание 2. Определим многочлены , , которые также являются базисными: .

Связь между двумя базисными многочленами устанавливается при помощи чисел Стерлинга первого и второго родов:

, .

Вместо «убывающих степеней» можно рассматривать «возрастающие степени»: .

, .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: