Соотношение вида
an + k + p 1 an + k -1+…+ pkan = h (n) (2)
где h (n) – функция от числа
, а
, называется линейным рекуррентным соотношением.
Линейное рекуррентное соотношение называют однородным, если f (n)=0:
an + k + p 1 an + k -1+…+ pkan =0. (3)
Многочлен xk + p 1 xk -1+…+ pk -1 x + pk называется характеристическим для соотношения (2).
Корень a многочлена
называется простым, если
делится на
, но не делится на
.
Корень a многочлена
называется кратным, если
делится на
, но не делится на
,
.
При этом число
называется кратностью корня
.
Основная теорема алгебры: многочлен степени
с комплексными коэффициентами имеет
комплексных корней с учетом их кратности.
Теорема 1. Пусть характеристический многочлен однородного линейного рекуррентного соотношения (3) имеет n простых корней a1, …, a n. Тогда общее решение рекуррентного соотношения (3) имеет следующий вид:
, (4)
где c 1,…, ck Î C.
Доказательство. Легко проверить следующие два утверждения.
(a) Последовательность cxn, где c Î C, является решением рекуррентного соотношения (3).
(b) Если последовательности an и bn являются решениями соотношения (3), то последовательность an + bn также является решением соотношения (3).
Из (a) и (b) следует, что любая последовательность вида (4) является решением соотношения (3).
Обратно, любое решение соотношения (3) имеет вид (4).
При n =0,1,…, k -1, из равенства (4) мы получим систему линейных уравнений относительно c 1,…, ck:
(5)
Определитель системы (5) есть известный в алгебре определитель Вандермонда:
.
Так как простые корни x 1,…, xk попарно различные, то D¹0. Значит, система (5) имеет (единственное) решение.
Теорема 2. Пусть характеристический многочлен однородного линейного рекуррентного соотношения (3) имеет k корней: a1 кратности
, …, a k кратности
,
,
. Тогда общее решение рекуррентного соотношения (3) имеет следующий вид:
, (6)
где
.
Замечание. Общее решение неоднородного линейного соотношения (2) можно найти как сумму общего решения однородного линейного соотношения (3) и частного решения неоднородного линейного соотношения (2).






