double arrow

Роль Дж. Максвелла в развитии молекулярно-кинетической теории газов

Итак, Клаузиус строит кинетическую теорию газов на основе классической механики, привлекая молекулярные представления и статистику. В формуле давления у него фигурирует средний квадрат квадратов скоростей отдельных молекул. Он вычисляет среднее число столкновений и среднюю длину свободного пробега молекулы, оперируя понятиями теории вероятностей. Эти результаты и методы подсчета Клаузиуса ныне вошли в учебники физики.

21 сентября 1859 г. на собрании Британской Ассоциации содействия прогрессу наук Джемс Клерк Максвелл сделал доклад «Пояснения к динамической теории газов». Максвелл отмечает, что из молекулярной гипотезы «может быть выведено так много свойств материи, в особенности если ее взять в газообразной форме, что истинная природа этого движения является предметом естественного интереса».

Максвелл указывает далее, что Даниил Бернулли, Джоуль, Крёниг, Клаузиус и другие «показали, что отношения между давлением, температурой и плотностью в совершенном газе могут быть объяснены, если предположить, что частицы движутся с постоянной скоростью по прямолинейным путям, ударяясь о стенки сосуда, содержащего газ, и вызывая этим давление». Для определения таких молекулярных величин, как средняя длина свободного пробега и диаметр молекулы, Максвелл исследует на основе законов механики движение и столкновение некоторого числа твердых, упругих шаров малого размера. Он приходит к выводу, что в такой системе в результате взаимных столкновений устанавливается распределение живых сил между частицами «согласно некоторому правильному закону». При этом возможно определить «среднее число частиц, скорости которых лежат между определенными пределами, хотя скорость каждой отдельной частицы изменяется при каждом столкновении». Максвелл находит следующие результаты.

Максвелл в качестве общего вывода констатирует, что «скорости распределяются между частицами по тому же закону, по которому распределяются ошибки между наблюдениями в теории «метода наименьших квадратов». Скорости лежат в пределах от 0 до °°, однако число молекул, имеющих большие скорости, сравнительно невелико.

Далее Максвелл показывает, что если в одном и том же сосуде движутся две системы частиц, то «средняя живая сила каждой частицы одинакова в обеих системах». Позднее Максвелл в своей речи «Молекулы» говорил по поводу этого предложения: «Динамическая теория говорит нам также и о том, что происходит, когда молекулы различных масс сталкиваются друг с другом. Большие массы будут двигаться медленнее меньших, так что в среднем каждая молекула, большая или малая, будет иметь ту же энергию движения.

Доказательство этой динамической теоремы — и в этом я заявляю свои права на приоритет — в последнее время получило широкое развитие и усовершенствование благодаря трудам д-ра Людвига Больцмана. Самое важное следствие, из нее вытекающее, состоит в том, что кубический сантиметр любого газа при постоянных температуре и давлении содержит одинаковое число молекул». Так закон Авогадро получил свое истолкование в кинетической теории газов наряду с другими законами идеальных газов.

Подводя итоги своим исследованиям, Максвелл писал: «Мы проследили здесь за математической теорией столкновения твердых упругих частиц в различных случаях, в которых, казалось бы, существует аналогия с явлением газов. Мы вывели, как это уже раньше сделали и другие, отношения давления, температуры и плотности для отдельного газа. Мы также доказали, что когда два различных газа свободно действуют друг на друга (а это бывает, когда они находятся при одной и той же температуре), то массы отдельных частиц каждого газа обратно пропорциональны квадрату молекулярной скорости и что, следовательно, при равной температуре и равном объеме количество частиц в единице объема одинаково».

В резюме Максвелла обращает; на себя внимание тот факт, что он ни слова не говорит об открытом им законе распределения скоростей, зато подроб но говорит об объяснении закона Авогадро. Заметим, что об этом объяснении он всегда упоминал в своих популярных статьях и выступлениях. Между тем мы сейчас видим главную заслугу Максвелла в открытом им законе скоростей и забыли о том, что сам Максвелл считал наиболее важным. Теорию равномерного распределения энергии по степеням свободы мы связываем с Больцманом. Она охватывает открытие Максвеллом равенства средних энергий молекул независимо от их массы при одной и той же температуре и объясняет неудачу его попытки истолковать соотношение теплоемко стей.

В теории Максвелла особенно наглядно видны ее механические предпосылки. Модель твердых упругих шариков, предложенная Максвеллом для объяснения газовых законов, работает по законам механики Ньютона. Максвелл не сомневался в применимости этих законов к атомам и молекулам. Но его поражал один замечательный факт в атомно-молекулярном мире; строгая определенность свойств молекул и атомов. «Молекулы, — пишет Максвелл, — образованы по одному и тому же типу с точностью, какой мы не находим в ощущаемых нами свойствах тел, ими образуемых. Во-первых, масса каждой молекулы и все другие ее свойства абсолютно неизменны. Во-вторых, свойства всех молекул одного рода абсолютно тождественны».

Квантовая физика нашла ключ к разрешению загадки, перед которой остановился Максвелл. Но величие Максвелла в том и проявляется, что он понял, что это загадка, непосильная для классической физики.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: