Доказательство

Последний интеграл в цепочке равенств равен 0, так как из условия задачи следует, что p(MX+t) – четная функция относительно t (p(MX+t) = p(MX-t)), а t2k+1 – нечетная функция.

Так как плотности нормального и равномерного законов распределений симметричны относительно х = МХ, то все центральные моменты нечетного порядка равны 0.

Теорема 2. Если X ~ N (a,s), то .

Чем больше моментов случайной величины известно, тем более детальное представление о законе распределения мы имеем. В теории вероятностей и математической статистике наиболее часто используются две числовые характеристики, основанные на центральных моментах 3-го и 4-го порядков. Это коэффициент асимметрии и эксцесс случайной величины.

Определение 3. Коэффициентом асимметрии случайной величины Х называется число b = .

Коэффициент асимметрии является центральным и начальным моментом нормированной случайной величины Y, где . Справедливость этого утверждения следует из следующих соотношений:

.

Асимметрия случайной величины Х равна асимметрии случайной величины Y = α Х + β

c точностью до знака α,. Это следует из того, что нормирование случайных величин a Х + b и Х приводит к одной и той же случайной величине Y с точностью до знака

Если распределение вероятностей несимметрично, причем «длинная часть» графика расположена справа от центра группирования, то β(х) > 0; если же «длинная часть» графика расположена слева, то β(х) < 0. Для нормального и равномерного распределений β = 0.

В качестве характеристики большей или меньшей степени «сглаженности» кривой плотности или многоугольника распределения по сравнению с нормальной плотностью используется понятие эксцесса.

Определение 4. Эксцессом случайной величины Х называется величина

g = .

Эксцесс случайной величины Х равен разности начального и центрального моментов 4-го порядка нормированной случайной величины и числа3, т.е. . Покажем это:

Эксцесс случайной величины Х равен эксцессу случайной величины

Y = α Х + β.

Найдем эксцесс нормальной случайной величины Х.

Если Х ~ N (a,s), то ~ (0,1).

Тогда

Таким образом, эксцесс нормально распределенной случайной величины равен 0. Если плотность распределения одномодальна и более «островершинна», чем плотность нормального распределения с той же дисперсией, то g(Х) > 0, если при тех же условиях менее «островершинна», то g(Х) < 0.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: