Моменты случайной величины. Характеристики формы распределения

Равномерное распределение

Распределение Пуассона

Как известно

Ранее мы показали, что , воспользуемся формулой .

Следовательно,

(4)

Известно, что .

Ранее мы показали, что , воспользуемся формулой .

,

тогда

. (5)

Определение 1. Начальным моментом k-го порядка случайной величины Х называется число, равное математическому ожиданию случайной величины Хк : , k = 1, 2,

Из этого определения следует, что математическое ожидание случайной величины является начальным моментом 1-го порядка, так как a1 = М(Х).

Определение 2. Центральным моментом k-го порядка называется число, равное математическому ожиданию k-й степени отклонения случайной величины от своего математического ожидания: .

При k = 1, , ;

при k = 2, .

Теорема 1. Если многоугольник распределения дискретной случайной величины или плотность распределения непрерывной случайной величины симметричны относительно прямой х = MX, то все центральные моменты нечетного порядка равны нулю, т.е. m2 к +1 = 0. Докажем это утверждение для непрерывной случайной величины.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: