double arrow

Ток смещения


Уравнения Максвелла

Теория электромагнитного поля, которая была предложена Фарадеем, была математически и логически завершена в работах Максвелла. При этом Максвелл выдвинул важную идею, согласно которой должна существовать «симметрия» во взаимозависимости электрического и магнитного поля. То есть, если переменное во времени магнитное поле создает вихревое электрическое поле, можно ожидать, что и меняющееся во времени электрическое поле должно порождать магнитное поле.

Действительно, электрическое поле создается двумя способами: зарядами (так создается кулоновское поле) и изменяющимся во времени магнитным полем (так создается индукционное поле). Однако до сих пор упоминался лишь один способ возникновения магнитного поля ‑ посредством тока. Поэтому естественно предположить, что и для магнитного поля должен существовать второй способ его возникновения.

Рассмотрим еще раз закон полного тока, определяющий циркуляцию магнитного поля,

,

где и – сила результирующего макротока и микротока, соответственно, сквозь поверхность, образованную замкнутым контуром .




Максвелл обобщил закон полного тока. Согласно его гипотезе, кроме токов (макротоков в проводниках и микротоков в магнетиках), должна существовать еще одна причина возникновения магнитного поля. С целью иллюстрации рассуждений Максвелла, рассмотрим предложенный им мысленный эксперимент.

Если в данной цепи (рис. 5.1) замкнуть ключ, то лампа при постоянном токе гореть не будет, поскольку емкость C – разрывает цепь постоянного тока. Но в моменты включения лампа будет вспыхивать.

Рис. 5.1.

Если в предложенной электрической цепи включить источник переменного тока – лампа будет гореть, но в то же время ясно, что электроны с одной обкладки на другую не переходят, поскольку между ними изолятор (или вакуум). С другой стороны с помощью соответствующего прибора, измеряющего магнитное поле, можно обнаружить, что в промежутке между обкладками существует магнитное поле (рис. 5.2).

Рис. 5.2. Иллюстрация возникновения тока смещения

Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение ток смещения. Максвелл определил плотность тока смещения в виде:

,

где ‑ вектор электрического смещения (именно название этого вектора дало название току смещения).

Теперь сумму тока проводимости и тока смещения можно назвать полным током. Его плотность:

.

Несмотря на кажущуюся общность, ток смещения эквивалентен току проводимости только в отношении способности создавать магнитное поле. Токи смещения существуют лишь там, где меняется со временем электрическое поле. В диэлектриках ток смещения состоит из двух существенно различных слагаемых. Поскольку вектор смещения равен , то отсюда видно, что плотность тока смещения складывается из «истинного» тока смещения и тока поляризации ‑ величины, обусловленной движением связанных зарядов. Очевидно, токи поляризации должны возбуждать магнитное поле, поскольку по своей природе эти токи не отличаются от токов проводимости. Самое «интересное» физическое свойство заключено в слагаемом , которое не связано ни с каким движением зарядов, а обусловлено только изменением электрического поля. Другими словами, даже в вакууме всякое изменение во времени электрического поля возбуждает в окружающем пространстве магнитное поле. Ток смещения в вакууме не выделяет джоулева тепла. Ток поляризации выделяет теплоту, связанную с трением в процессе поляризации диэлектрика.



Открытие Максвеллом тока смещения является чисто теоретическим выводом, однако данное открытие по своей значимости для физики аналогично открытию электромагнитной индукции Фарадеем.







Сейчас читают про: