Проективно-аффинное пространство

Опр.1. Проективное пространство, в котором какая-нибудь одна гиперплоскость выделена из остальных и названа «несобственной» или «бесконечно удаленной», называется проективно-аффинным пространством.

Рассмотрим, каким образом можно выделить в n-мерном проективном пространстве RPn его «несобственные» элементы точки, прямые, двумерные плоскости и т.д.

Пусть в n+1-мерном аффинном пространстве Аn+1 дано n-мерное подпространство Аn и в нём - аффинная система координат . Назовём аффинную систему координат пространства Аn+1 естественно связанной с координатной системой n-мерного пространства Аn, если начало О системы координат не лежит в пространстве Аn. Первые n координатных векторов у этих координатных систем общие: , а последний вектор есть вектор . Тогда в системе координат подпространство Аn пространства Аn+1 задаётся уравнением: . Возьмём теперь в пространстве An+1 связку с центром О. Если произвольная точка М гиперплоскости Аn имеет в системе координаты , то координаты этой точки М в системе следующие: Поэтому наборами координат луча связки О являются все наборы х12,...,хn+1, пропорциональные набору

Опр. 2. Все такие указанные наборы называются наборами однородных координат точки М в системе однородных координат, соответствующей аффинной координатной системе .

Итак, однородные координаты х12,...,хn+1 точки М связаны с её аффинными координатами в системе пропорцией:

Отсюда аффинные координаты выражаются через однородные по формулам: .

Опр. 3. Соответствие между точками М гиперплоскости Аn и лучами связки О называется перспективным соответствием.

При этом каждой точке М гиперплоскости Аn, имеющей однородные координаты х12,...,хn+1 соответствует луч связки О с такими же координатами в системе .

Обратно, каждому лучу m(х12,...,хn+1) связки О, у которого последняя координата , соответствует точка М гиперплоскости Аn с теми же координатами х12,...,хn+1. Однако, лучам m связки О, у которых , не соответствует никакая точка М гиперплоскости А n. Чтобы сделать перспективное соответствие между связкой О и гиперплоскостью Аn взаимно однозначным или биективным, дополним эту гиперплоскость несобственными или бесконечно удалёнными точками с наборами однородных координат х12,...,хn,0. Пополненная таким образом гиперплоскость превращается в проективное пространство RPn = . Это пространство становится арифметическим, если отождествить каждую его точку М с классом наборов ее однородных координат.

Замечание. Арифметическое проективное пространство естественно рассматривать как проективное пространство, полученное от пополнения несобственными элементами обыкновенного n-мерного аффинного пространства Аn с заданной в нём системой аффинных координат . Несобственные точки этого пространства - это точки (х12,...,хn+1), для которых , причем все такие точки принадлежат несобственной гиперплоскости с уравнением: или . Преимущество однородной системы координат состоит в том, что несобственные точки получают вполне определенные координаты.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: