Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

IV. Адиабатный процесс




Рис. Адиабатный процесс ,

Адиабатный процесс протекает без теплообмена с окружающей средой, при соблюдении условия dq=0. Из выражения () при условии dq=0 следует , т.е. теплоемкость адиабатного процесса с=0. Из () вытекает, что ds=0, s=const Следовательно, в адиабатном процессе энтропия не изменяется. В соответствии с выражением показатель политропы при адиабатном процессе будет равен , который обозначается , как было отмечено выше, и называется показателем адиабаты. Уравнение, описывающее адиабатный процесс, имеет вид p·vk=const, из которого следует .

Перечень величин при адиабатном процессе должен удовлетворять следующим соотношениям:

; (1.56)

;

;

;

; (1.57)

; (1.58)

(1.59)

Du=u2 -u1=cv(T2 -T1); (1.60)

Dh=h2 -h1=cp(T2 -T1); (1.61)

Ds=s2-s1=0, т. к. s2= s1. (1.62)

Политропные процессы

Рис.

Выше было отмечено, что термодинамические процессы, которые описываются уравнением p×vn=const, называются политропными. В этом уравнении показатель политропы меняется в пределах -¥< n< +¥. Представим объединенную картину линий изопараметрических процессов в pv -, Ts - диаграммах, приняв за начало всех процессов (как в сторону расширения, так и в сторону сжатия) произвольную точку А. На рис. приведены соответственно: изохора (n= ±¥), изобара (n=0), изотерма (n=1), адиабата (n=k). Эти изолинии делят координатную плоскость на 8 областей, в пределах каждой из которых все термодинамические процессы обладают общностью определенных свойств. Все процессы, начинающиеся в точке А и происходящие в областях 1, 2, 3, 4, сопровождаются расширением рабочего тела (dv>0), следовательно, при этом совершается положительная работа δl=p×dv, а процессы, происходящие в областях 5, 6, 7 и 8 (dv<0), имеют отрицательную работу (в этих случаях работа совершается над системой внешними силами).

Процессы, совершающиеся в областях 1, 2, 3 и 8, протекают с подводом теплоты извне (ds>0), а в областях 4, 5, 6 и 7 - с отводом теплоты (ds<0).

Изотерма (n=1) делит рассматриваемое поле координатной плоскости на две части: в областях 1, 2, 7, 8 процессы протекают с повышением температуры (dT>0), а в областях 3, 4, 5, 6 процессы протекают с понижением температуры (dT<0). В области 3 между изотермой (n=1) и адиабатой (n=k) при подводе теплоты (ds>0) происходит падение температуры (dT<0), а при отводе теплоты (ds<0) в области 7 происходит повышение температуры (dT>0).

Все соотношения, вытекающие из уравнений политропных процессов p×vn=const; T×vn-1=const; Tn×p1-n=const, должны быть аналогичными соотношениям, вытекающим из соответствующих уравнений адиабатного процесса и получаются путем замены показателя адиабаты k на показатель политропы n. Однако при этом необходимо иметь в виду, что теплоемкость политропного процесса определяется по формуле , а также теплота, участвующая в процессе, в этом случае определяется исходя из уравнения первого закона термодинамики




.

Перечень величин (*) в политропном процессе должен удовлетворять следующим соотношениям:

; (1.63)

; (1.64)

; ; (1.65)

; (1.66)

Du=u2 -u1=cv×(T2-T1); (1.67)

Dh=h2 -h1=cp× (T2-T1); (1.68)

; (1.69)

. (66)





Дата добавления: 2014-02-24; просмотров: 1125; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9725 - | 7570 - или читать все...

Читайте также:

 

34.204.200.74 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.