Персональные компьютеры и их классификация
Классификация ЭВМ по назначению и функциональным возможностям
Электронно-вычислительные машины (ЭВМ)
Техническое обеспечение информационных технологий
1. Каковы характерные черты информационного общества?
2. Что понимается под термином «информационная культура»?
3. Какова основная цель программы «Электронная Беларусь»?
4. Какие приоритетные направления включает программа «Электронная Беларусь»?
5. Что означает понятие «информационная технология»?
6. Какова история развития информационных технологий?
7. Что такое компьютерные информационные технологии?
8. Каковы особенности современного этапа развития компьютерных технологий?
9. Каким образом классифицируются компьютерные информационные технологии?
Техническое обеспечение — совокупность технических средств, предназначенных для функционирования информационной системы. Оно выбирается, исходя из объема и сложности решаемых на предприятии (в организации) задач, уровня развития информационных технологий в данной сфере человеческой деятельности (при наличии соответствующих денежных средств).
ЭВМ (компьютер) является универсальным инструментом для решения разнообразных задач по преобразованию информации, но его универсальность определяется не столько аппаратным обеспечением, сколько установленными программными средствами, другими словами, все «знания» компьютера сосредоточены в программах, которые представляют собой точную и подробную последовательность инструкций, представленных на понятном для компьютера языке, по обработке информации. Меняя программы на компьютере можно превратить его в рабочее место дизайнера, бухгалтера или конструктора, статистика или агронома, использовать его для прослушивания музыки, просмотра кинофильмов и других развлечений.
В общем случае ЭВМ можно классифицировать по ряду признаков.
По назначению ЭВМ можно разделить на три группы:
1. Универсальные (общего назначения) — предназначены для решения самых различных задач: инженерно-технических, экономических, математических, информационных и др., отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах. Характерными чертами универсальных ЭВМ является: высокая производительность; разнообразие форм обрабатываемых данных при большом диапазоне их изменения и высокой степени их представления; обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных; большая емкость оперативной памяти; развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.
2. Проблемно-ориентированные — служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами. Они используются для регистрации, накопления и обработки относительно небольших объемов данных, выполнения расчетов по относительно несложным алгоритмам. Проблемно-ориентированные ЭВМ обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
3. Специализированные — используются для решения узкого круга задач или реализации строго определенной группы функций. Узкая ориентация ЭВМ позволяет четко определить их структуру, существенно снизить сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения.
По размерам и функциональным возможностям ЭВМ делятся на:
§ Сверхбольшие (суперЭВМ) — мощные многопроцессорные вычислительные машины с быстродействием от сотен миллионов до десятков миллиардов операций в секунду с большим объемом оперативной и внешней (дисковой) памяти, которые используются для сложных научных расчетов.
§ Большие ЭВМ (Mainframe — мэйнфреймы) — вычислительные машины, имеющие производительность десятки миллионов операций в секунду и многопользовательский режим работы. Основные направления эффективного применения мэйнфреймов — это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами.
§ Малые (мини-ЭВМ) по основным характеристикам приближены к большим ЭВМ, но они более компактны и значительно дешевле больших ЭВМ. Мини-ЭВМ используются чаще всего для управления технологическими процессами, а также успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования и искусственного интеллекта.
§ Микро-ЭВМ обязаны своим появлением изобретению микропроцессора, наличие которого служило первоначально определяющим признаком микро-ЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ. Микро-ЭВМ выполняют как индивидуальное обслуживания пользователя, так и работу в автоматизированных системах управления.
Микро-ЭВМ делятся на универсальные и специализированные, которые, в свою очередь, могут быть многопользовательские и однопользовательские.
Универсальные многопользовательские микро-ЭВМ — мощные микро-ЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
Универсальные однопользовательские микро-ЭВМ — персональные компьютеры.
Специализированные многопользовательские микро-ЭВМ — сервера — используются в сетевых вычислительных системах.
Специализированные однопользовательские микро-ЭВМ — рабочие станции — используются для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Следует отметить, что приведенная выше классификация ЭВМ носит достаточно условный характер и может быть расширена по ряду других признаков.
Как указывалось выше, персональный компьютер (ПК) представляет собой универсальную однопользовательскую микроЭВМ.
В общем случае, для удовлетворения потребностей пользователя ПК должен обладать следующими свойствами:
§ иметь относительно небольшую стоимость;
§ обеспечивать автономность эксплуатации без специальных требований к условиям окружающей среды;
§ обеспечивать гибкость архитектуры, делающей возможным ее перестройку для разнообразных применений в сфере управления, науки, образования, в быту;
§ иметь достаточно простую операционную систему и программное обеспечение, чтобы с ПК мог работать пользователь без специальной профессиональной подготовки;
§ и др.
Класс ПК имеет отдельную классификацию, которая может быть следующей.
Первый признак, по которому делятся компьютеры, — это «платформа». Большинство компьютеров в Беларуси являются IBM PC-совместимыми.
Вторая классификация — по назначению, исходя из которого ПК условно можно разделить на домашние компьютеры; рабочие станции (офисные компьютеры); «настольные издательства» и сервера (компьютеры-распорядители, контролирующие локальную сеть предприятия или узел Internet).
В соответствии с международным стандартом-спецификацией PC99 ПК по назначению делятся на следующие категории:
1. Массовый ПК (Consumer PC);
2. Деловой ПК (Office PC);
3. Портативный ПК (Mobile PC);
4. Рабочая станция (Workstation PC);
5. Развлекательный ПК (Entertainment PC).
Большинство ПК, присутствующих в настоящее время на рынке, попадают в категорию массовых ПК. Для деловых ПК обычно минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК — к средствам воспроизведения звука и видео.
По конструктивным особенностям можно выделить следующие классы ПК:
§ Настольные компьютеры (Desktop).
§ Настольные мини-компьютеры (LCD PC, slim-desk) — конкуренты ноутбуков. Их корпус примерно в четыре раза меньше, чем у desktop; функциональные возможности больше чем у ноутбуков, но также есть ограничения в модернизации.
§ Планшетные компьютеры (Tablet PC) — «компьютер будущего»: процессор и «все внутренности» находятся за ЖКД, а экран чувствителен к нажатию (на значки надо нажимать пальцем, а вводить информацию специальным электронным пером).
§ Портативные компьютеры (ноутбуки) — обычно обладают теми же возможностями, что и стационарные (настольные) ПК, включая работу с CD/DVD и подключение к вычислительным сетям. Компактны, имеют вес от 2 до 5 кг, оснащены ЖКД.
§ Субноутбуки — ПК от очень маленьких с ЖКД 8 дюймов до «почти ноутбуков». Не имеют CD/DVD дисковода, но могут содержать модем и сетевую карту. Весят в 1,5—2 раза меньше ноутбуков, но имеют не очень высокую производительность.
§ Карманные компьютеры (PalmTop или PDA — Personal Digital Assistant) — используются как органайзер и записная книжка, для чтения электронных книг, как мультимедиа-центр и т.д. Позволяют вводить информацию специальным пером (но можно подключить клавиатуру). Оснащены средствами подключения к стационарным компьютерам. У компьютеров типа PDA объем возможностей обычно сокращен, некоторые из них только позволяют выполнять записи текстов, несложные вычисления и вести расписание.
Конструктивно ПК состоит из системного блока, монитора, клавиатуры, мыши и внешних (периферийных) устройств.
Системный блок (корпус) представляет собой коробку из металла и пластмассы с блоком питания, в которой предусмотрены «посадочные места» для основных компонентов компьютера: системной (материнской) платы, накопителей (винчестера, дисковода, CD/DVD-приводов) и др. Системный блок характеризуется жёсткостью конструкции корпуса, мощностью блока питания, количеством «посадочных мест» и системой вентиляции.
Материнская (системная) плата несет на себе главные компоненты компьютера. Именно к ней подключаются все другие устройства, входящие в состав системного блока ПК. Функции материнской платы — связь и координация действий всех устройств компьютера, передача сигнала от одного устройства к другому с помощью системной шины.
Существуют материнские платы с интегрированными устройствами, заменяющими видеокарту, звуковую и сетевую карту. Однако большинство материнских плат содержит лишь основные узлы, а дополнительные внутренние устройства располагаются на отдельных (дочерних) платах, которые вставляются в специальные слоты расширения (щелевидные разъемы) на материнской плате.
Рис. 2.1. Вид материнской платы
На современной материнской плате могут присутствовать следующие разъемы (рис. 2.1):
1. Разъем для установки процессора.
2. Разъемы-»слоты» стандарта PCI и PCI-Express двух типов: короткие PCI-Express x1 и длинные (с более высокой скоростью передачи данных) PCI-Express x16 для подключения дополнительных плат (звуковой карты, видеокарты, встроенного модема и др.).
3. Разъем APG — слот, предназначенный для установки видеокарты (на старых материнских платах).
4. Слоты для установки оперативной памяти. Они привязаны к типу оперативной памяти и обычно на плате устанавливаются слоты для одного типа модулей памяти.
5. Разъемы для подключения накопителей: IDE — Imbedded Drive Electronics, SerialATA (SATA) и Floppy, а на некоторых платах SCSI — Small Computer Systems Interface.
Помимо разъемов на материнской плате имеются контроллеры (портов ввода-вывода, SATA, FireWire, сетевой и пр.), дополнительные контактные группы для подключения портов USB и IEEE1394 (FireWire), порта S/PDIF, а также звуковой кодек и другие элементы.
Материнская плата характеризуется: базовым набором микросхем (чипсетом); типом шины; видом и количеством слотов и контроллеров; типом поддерживаемой оперативной памяти; наличием интегрированных устройств; форм-фактором; фирмой производителем и т.д.
Базовый набор микросхем (чипсет) — самый важный показатель, от него напрямую зависят самые важные характеристики материнской платы — тип шины, скорость передачи данных, число поддерживаемых моделей процессоров, базовый тип оперативной памяти и параметры работы с ней и т.д. Каждый чипсет, как правило, сформирован под конкретное поколение процессоров.
Современный процессор не может работать без соответствующей системы охлаждения (max допустимая температура процессора порядка 90 градусов), поэтому на процессор устанавливается кулер — специальный вентилятор-охладитель. Большинство кулеров снабжены металлическим радиатором, «снимающим» тепло с поверхности кристалла. Радиатор современных кулеров, как правило, сделан из алюминия со специальными медными вставками (для улучшения теплопроводности).
Структурная схема ПК
Упрощенная структурная схема ПК представлена на рис. 2.2 (без выделения в качестве отдельных элементов материнской платы и блока питания).
Рассмотрим основные элементы данной схемы.
Процессор (микропроцессор) является основным элементом ПК и предназначен для управления работой всего ПК, а также для выполнения операций по обработке информации.
Системная шина — основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Она включает в себя шину данных, адресную шину, шину инструкций (управления) и шину питания, обеспечивая три направления передачи информации:
1. Между процессором и основной памятью;
2. Между процессором и портами ввода-вывода внешних устройств;
3. Между основной памятью и портами ввода-вывода внешних устройств.
Рис. 2.2. Упрощенная структурная схема ПК
Важнейшими функциональными характеристиками системной шины являются количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимальная скорость передачи информации. Пропускная способность шины зависит от ее разрядности и тактовой частоты, на которой шина работает.
Все внешние устройства (точнее, их порты ввода-вывода) через соответствующие унифицированные разъемы подключаются к шине через адаптеры (специальные устройства сопряжения и обмена) или через контроллеры (электронные управляющие схемы).
Видеоадаптер (видеокарта) предназначен для подключения монитора к компьютеру. Его основное назначение — формирование видеосигнала для отображения данных на мониторе. Кроме этого, многие видеоадаптеры имеют дополнительные мультимедийные возможности: прием изображений с внешнего источника (видеокамера, видеомагнитофона или телевизионной антенны), вывод изображения на внешние источники (телевизор или видеомагнитофон), декодирование видеосигнала, поступающего с дисков VideoCD или DVD и др.
Видеоадаптер характеризуется:
§ графическим чипом (чипсетом);
§ объемом и типом видеопамяти (оперативной памяти видеоадаптера);
§ разрешающей способностью (максимальным количеством точек по горизонтали и вертикали, которое он способен воспроизвести на экране);
§ цветовым режимом (количеством отображаемых цветов);
§ максимальной частотой развертки (частотой обновления кадров);
§ интерфейсом подключения к системной плате;
§ дополнительными мультимедийными возможностями;
§ поддержкой цифрового интерфейса;
§ и др.
Адаптеры портов ввода-вывода обслуживают разнообразные внешние устройства, присоединение которых к ПК осуществляется через специальные схемные элементы — порты. В зависимости от способа передачи информации различают следующие порты:
Параллельные порты (LPT) позволяют передавать за один такт целый байт информации и применяются для быстрой связи на небольших расстояниях.
Последовательные порты (COM) за один такт передают один бит и, в общем случае, работают медленнее, но позволяют передавать данные на большие расстояния. Следует, однако, отметить, что современные последовательные порты типа USB и IEEE1394 превосходят по скорости параллельные, и поэтому вытесняют последние.
Специальные порты служат для подключения клавиатуры, микрофона и динамиков (для управления последними используется звуковая карта).
Игровой порт служит для подключения специального механического устройства джойстика, используемого в компьютерных играх.
Сетевой адаптер (сетевая плата) предназначен для сопряжения компьютера с физическим каналом передачи данных, т.е. для объединения ПК в локальную сеть. Сетевой адаптер осуществляет двунаправленную транспортировку данных: прием сигналов из канала и передачу их на шину компьютера или наоборот — прием данных из компьютера и передачу их на канал. При этом сетевой адаптер выполняет все необходимые преобразования структуры передаваемых сообщений строго в соответствии со стандартами, по которым построена данная вычислительная сеть.
Контроллеры НЖМД, НГМД и НОД обеспечивают подключение и функционирование накопителей на жестких магнитных дисках (винчестеров), накопителя на гибких магнитных дисках (дисковода), накопителей на оптических дисках (CD/DVD-приводов).
Внутренняя память ПК предназначена для хранения и обработки данных.
Емкость памяти измеряется в Байтах (1Байт = 8 Бит), Килобайтах (1 Кбайт = 1024 Байт), Мегабайтах (1Мбайт = 1024 Кбайт), Гигабайтах (1Гбайт = 1024 Мбайт), Терабайтах (1Тбайт = 1024 Гбайт).
Выделяют следующие виды внутренней памяти:
1. Постоянное запоминающее устройство (ПЗУ, ROM — read only memory) — память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ — модуль BIOS (Basic Input/Output System — базовая система ввода/вывода), в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. ПЗУ сохраняет информацию и при отключенном питании компьютера, т.е. является энергонезависимой памятью. Большинство микросхем ПЗУ являются масочными (программируются изготовителем) — внести в них изменение невозможно.
2. Полупостоянное запоминающее устройство (ППЗУ,CMOS — Complementary Metal-Oxide Semiconductor)– память с невысоким быстродействием и минимальным энергопотреблением от батарейки — используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы. Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS.
3. Оперативное запоминающее устройство (ОЗУ, RAM — random access memory) — память для оперативной записи (оперативная память), хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве особенности ОЗУ следует отменить невозможность сохранения в ней информации после выключения питания ПК (энергозависимость).
Оперативная память выпускается в виде микросхем, собранных в специальные модули памяти, определенного типа и объема.
4. Кэш-память — служит буфером между оперативной памятью и микропроцессором и позволяет увеличить скорость выполнения операций, т.к. является сверхбыстродействующей. В нее помещаются данные, которые процессор получил, и будет использовать в ближайшие такты своей работы. При обращении микропроцессора к памяти сначала ищутся данные в кэш-памяти, а затем, если остается необходимость, в оперативной памяти.