Исследование основных термодинамических процессов идеальных газов в закрытых системах

ЛЕКЦИЯ №2.

Исследование термодинамических процессов идеальных газов осуществляется в следующей последовательности: выводится уравнение процесса, связывающее начальные и конечные параметры рабочего тела в данном процессе; работа изменения объёма газа, количество теплоты подведённой к газу; изменение внутренней энергии и энтропии термодинамической системы.

Изохорный процесс.

Условие протекания процесса v=const; согласно уравнению состояния идеального газа р/T=R/v=const. Работа в процессе dl=рdv=0, при с=const

Если с, т.к. dl=0, то

Следовательно . .

Изобарный процесс.

Р=const. , закон Гей-Люссака, , количество теплоты

в этом процессе найдём при условии

изменение внутренней энергии в процессе

Если записать первый закон термодинамики Изотермический процесс.

Pv=RT=const, т.е.

Адиабатный процесс.

Условие адиабатного процесса dq=0. Воспользуемся соотношением:

Политропный процесс.

,

воспользовавшись уравнением Клапейрона, запишем:

Цикл Карно.

Чем больше тепла в прямом термодинамическом цикле превращено в полезную работу и чем меньше её передано теплоприёмнику, тем цикл более экономичен и тем, следовательно, выше его термический КПД.

Максимальное значение термического КПД было определено С. Карно в 1827 г., французским инженером. Цикл рассматривается в координатах

p-v. В начальный момент параметры рабочего тела начинается изотермический процесс расширения рабочего тела за счёт подвода теплоты до точки 2, при этом работа, совершённая в изотермическом процессе, определяется фигурой 1-2-6-8-1. Далее идёт разобщение рабочего тела с теплоотдатчиком и процесс 2-3 адиабатное расширение – работа 2-3-5-6-2; в положение т.3 поршень займёт крайнее правое положение. В т.3 происходит общение рабочего тела с теплоприёмником, имеющим температуру T, т.е. имеет место изотермическое сжатие – работа 3-5-7-4-3 – отрицательная работа. В т.4 процесс заканчивается и далее идёт процесс адиабатного сжатия по адиабате 4-1. В конце процесса рабочее тело принимает первоначальные параметры. Работа адиабатного сжатия 1-4-7-8-1. Общее выражение термического КПД имеет вид:

В цикле Карно имеет равенство объёмов, т.е.

Тогда:

.

Для современных материалов η=0,7-0,8,

для холодильных машин

Понятие об энтропии газа.

Рассмотрим на рисунке обратимый процесс 1-2. Разобьём его на отдельные участки, на каждом из которых T=const, подводимая теплота dq. Величину dq/T называем приведенной теплотой и дадим обозначение ds:

Взяв интеграл на участке 1-2, получим выражение:

Из первого закона термодинамики:

В координатах T-s можно определить количество теплоты, затрачиваемое на осуществление любого термодинамического процесса. Для адиабатного процесса s=const и в T-s координатах цикл Карно есть прямоугольник и соответственно:

Водяной пар.

Водяной пар широко используется в теплотехнике как рабочее тело и теплоноситель. Его состояние близко к насыщению и не подчиняется законам для идеальных газов. Для реальных газов наиболее простым является уравнение Ван-дер-Ваальса, предложенное в 1873 г.

,

a – коэффициент, зависящий от сил сцепления;

b – величина, учитывающая собственный объём молекул.

Для водяного пара с поправкой на ассоциацию и диссоциацию получили уравнение М.П. Вукалович и И.И. Новиков в 1939 г.

где с и m – опытные коэффициенты.

Чем больше v, тем ближе к состоянию идеального газа наш реальный газ – водяной пар в воздухе в частности. В этом случае можно пользоваться уравнением Клапейрона.

Поршневые двигатели внутреннего

сгорания.

Тепловые двигатели, в которых топливо сгорает внутри рабочего цилиндра, называются поршневыми двигателями внутреннего сгорания. Преобразование тепловой энергии в механическую в них осуществляется посредством передачи работы расширения продуктов сгорания топлива через поршень и кривошипно-шатунный механизм на коленчатый вал двигателя.

Классификация двигателей осуществляется по следующим основным признакам:

1. 4-тактные и 2-тактные;

2. По способу смесеобразования и воспламенения рабочей смеси;

3. По роду топлива;

4. По назначению;

5. По конструктивному исполнению.

ИДЕАЛЬНЫЕ ЦИКЛЫ ДВС.

Действительный рабочий процесс заменим идеальным – процесс сгорания заменим подводом теплоты извне , процесс перезарядки цилиндров – теплоотводом . Цикл, таким образом, становится круговым, замкнутым.

Рабочее тело – 1 кг идеального газа, изменение теплоёмкости которого не учитывается при осуществлении цикла. Эти допущения позволяют считать, что двигатели работают по обратимым термодинамическим циклам и результаты исследования можно применять при изучении тепловых процессов в двигателях, вводя поправочные коэффициенты.

Рассмотрим три способа подвода теплоты к рабочему телу в циклах ДВС.

Циклы поршневых двигателей внутреннего сгорания

в координатах p-v.

Цикл «а» представляет собой автомобильный цикл с изохорным подводом теплоты. 1-2 адиабатное сжатие, 2-3 изохорный подвод теплоты q, повышение давления до точки 3, как следствие этого. Затем адиабатное расширение 3-4 и, наконец, изохорный процесс отвода теплоты , т.е. приходим в исходное состояние. Термический к.п.д. такого цикла определяется по формуле:

где степень сжатия рабочего тела. Для цикла «б» (цикл Дизеля, предложенный в 1897 г.) аналогичный к.п.д найдём по формуле:

где степень предварительного расширения.

Цикл со смешанным подводом теплоты, «в», более экономичен:

где степень повышения давления.

Действительный процесс и индикаторная диаграмма двигателей внутреннего сгорания.

Индикаторная мощность двигателя:

литровая мощность двигателя соответственно:

полнота использования теплоты:

для карбюраторных

Удельный эффективный расход топлива:

,


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: