Излучения

ИСТОЧНИКИ И ОСНОВНЫЕ СВОЙСТВА РЕНТГЕНОВСКОГО

Рентгеновское излучение.

Исследование спектров комбинационного рассеяния позволяет судить о строении молекул, о характере симметрии молекул, определить собственные частоты колебаний атомов, осуществлять анализ сложных молекулярных смесей и, особенно, молекул органических.

В 1895 г., исследуя катодные лучи, немецкий ученый Вильгельм Конрад Рентген обнаружил, что флуоресцирующий экран, поднесенный к установке, закрытой плотным непрозрачным для света чехлом, ярко вспыхивает. Был сделан вывод, что существует какое-то неизвестное излучение, для которого материал чехла является прозрачным. Это излучение Рентген назвал X-лучами.

Исследуя причины появления этого излучения, Рентген установил, что оно появляется в том месте, где пучок летящих электронов ударяется о стенку катодной трубки. Исходя из этого обстоятельства, Рентген сконструировал и построил первую, предназначенную специально для получения X-излучения, трубку, существенные черты конструкции которой сохранились до наших дней. Рентгеновская трубка (рис.1) представляет собой стеклянный баллон с двумя впаянными основными электродами: анодом (А) и катодом (К). Катод выполнен в виде спирали из тугоплавкого металла (W, Pt), через которую пропускают ток. При этом, вследствие термоэлектронной эмиссии, нагретая спираль испускает электроны. Анод представляет собой цилиндр, торец которого срезан под углом. В скошенную поверхность торца анода впаяна пластинка из тугоплавкого металла (W, Pt, Cu, Ag и т.д.) – «зеркало» (З). В баллоне создается высокое разряжение Р =10-6-10-7 мм.рт.ст. Между анодом и катодом приложено высокое напряжение – 40÷200 кВ, а в некоторых случаях даже до I000 кВ. Электроны, испускаемые нитью накала, ускоряются электрическим полем до скоростей ~2·108 м/с. Узкий пучок электронов и направляется на анод, который, благодаря косому срезу, направляет возникающее на «зеркале» рентгеновское излучение в выходное окно трубки. К.п.д. рентгеновской трубки составляет всего 1-5 %, а остальная энергия электронного пучка превращается во внутреннюю энергию. По этой причине тело анода изготавливают из хорошо проводящих тепло материалов (Сu) и часто полым для подвода охлаждающей жидкости.

Уже первые опыты обнаружили целый ряд свойств рентгеновского излучения: лучи обладают значительной проникающей способностью; ионизируют вещество; обладают химическим действием; засвечивают фотопленку и вызывают образование перекиси водорода в воде; влияют на протекание биологических процессов; распространяются прямолинейно и не отклоняются ни в электрическом, ни в магнитном полях; вызывают явление люминесценции. В дальнейшем установили, что рентгеновское излучение представляет собой электромагнитные волны с длиной от 10-5 до 80 нм (10-14 ÷ 10-7 м).

В природе рентгеновское излучение присутствует в космическом излучении, его испускает солнечная корона, а на земле практически все радиоактивные элементы.

По механизму возбуждения рентгеновское излучение подразделяется на тормозное и характеристическое.

2. ТОРМОЗНОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: