Способы реализации прикладных программных сред

Совместимость и множественные прикладные среды

Концепция множественных прикладных сред связана с нуждами конечных пользователей - возможностью операционной системы выполнять приложения других операционных систем. Такое свойство операционной системы называется совместимостью.

Двоичная совместимость и совместимость исходных текстов

Различают совместимость на двоичном уровне и совместимость на уровне исходных текстов. Приложения обычно хранятся в ОС в виде исполняемых файлов, содержащих двоичные образы кодов и данных. Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение в среде другой ОС.

Совместимость на уровне исходных текстов требует наличия соответствующего компилятора в составе программного обеспечения компьютера, на котором предполагается выполнять данное приложение, а также совместимости на уровне библиотек и системных вызовов. При этом необходима компиляция имеющихся исходных текстов в исполняемый модуль.

Совместимость на уровне исходных текстов важна в основном для разработчиков приложений, в распоряжении которых эти исходные тексты имеются. Для конечных пользователей практическое значение имеет только двоичная совместимость, так как только в этом случае они могут использовать один и тот же коммерческий продукт в виде двоичного исполняемого кода в различных операционных средах.

Обладает ли операционные системы двоичной совместимостью или совместимостью исходных текстов, зависит от многих факторов. Главный из них - архитектура процессора, на котором работает новая ОС. Если процессор использует тот же набор команд (возможно, с некоторыми добавлениями) и тот же диапазон адресов, тогда двоичная совместимость может быть достигнута довольно просто. Для этого достаточно соблюдения следующих условий:

- вызовы функций API, которые содержит приложение, должны поддерживаться ОС;

- внутренняя структура исполняемого файла приложения должна соответствовать структуре исполняемых файлов ОС.

Сложнее достичь двоичной совместимости операционным системам, предназначенным для выполнения на процессорах разной архитектуры. Кроме соблюдения приведенных выше условий необходимо организовать эмуляцию двоичного кода, что приведет к довольно медленному выполнению программы.

Создание полноценной прикладной среды, полностью совместимой со средой другой операционной системы, является задачей, тесно связанной со структурой операционной системы. Существуют различные варианты построения множественных прикладных сред, отличающиеся как особенностями архитектурных решений, так и функциональными возможностями, обеспечивающими различную степень переносимости приложений.

Один из наиболее очевидных вариантов реализации множественных прикладных сред основывается на стандартной многоуровневой структуре ОС и обеспечивает трансляцию системных вызовов.

На рисунке 6 операционная система OS1 поддерживает кроме своих приложений приложения операционных систем OS2 и OS3.

Для этого в ее составе имеются специальные приложения - прикладные программные среды, - которые транслируют интерфейсы «чужих» операционных систем API OS2 и API OS3 в интерфейс своей операционной системы - API OS1.

Рисунок 6 - Прикладные программные среды, транслирующие системные вызовы

В другом варианте реализации множественных прикладных сред операционная система имеет несколько равноправных прикладных программных интерфейсов (рисунок 7). В приведенном примере операционная система поддерживает приложения для OS1, OS2 и OS3.

Для этого непосредственно в пространстве ядра системы размещены прикладные программные интерфейсы всех этих ОС: API OS1, API OS2 и API OS3.

Рисунок 7 - Реализация совместимости на основе нескольких равноправных API

В этом варианте функции уровня API обращаются к функциям нижележащего уровня ОС, которые должны поддерживать все три в общем случае несовместимые прикладные среды. Функции каждого API реализуются ядром с учетом специфики соответствующей ОС, даже если они имеют аналогичное назначение. Для того чтобы ядро могло выбрать нужный вариант реализации системного вызова, каждый процесс должен передавать в ядро набор идентифицирующих характеристик.

Еще один способ построения множественных прикладных сред основан на микроядерном подходе. В соответствии с микроядерной архитектурой все функции ОС реализуются микроядром и серверами пользовательского режима. Каждая прикладная среда оформляется в виде отдельного сервера пользовательского режима и не включает базовых механизмов (рисунок 8). Приложения обращаются с системными вызовами к соответствующей прикладной среде через микроядро. Прикладная среда обрабатывает запрос, выполняет его и отсылает приложению результат. В ходе выполнения запроса прикладной среде приходится, в свою очередь, обращаться к базовым механизмам ОС, реализуемым микроядром и другими серверами ОС.

Такому подходу к конструированию множественных прикладных сред присущи все достоинства и недостатки микроядерной архитектуры, в частности:

- очень просто можно добавлять и исключать прикладные среды, что является следствием хорошей расширяемости микроядерных ОС;

- надежность и стабильность выражаются в том, что при отказе одной из прикладных сред все остальные сохраняют работоспособность;

- низкая производительность микроядерных ОС сказывается на скорости работы прикладных сред, а значит, и на скорости выполнения приложений.

Рисунок 8 - Микроядерный подход к реализации множественных прикладных сред

Создание в рамках одной операционной системы нескольких прикладных сред для выполнения приложений различных ОС - путь, который позволяет иметь единственную версию программы и переносить ее между ОС.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: