Структура и форма полосы поглощения

Спектры поглощения

Возбужденные электронные состояния

Используя слово свет, мы обычно подразумеваем оптическое излучение, видимое человеческим глазом. Спектральная кривая чувствительности человеческого глаза лежит в диапазоне 400 £ l £ 750 нм. Максимум чувствительности находится около 555 нм (зеленый свет). Для фотохимии интерес представляет более широкая область излучения, которую формально можно разделить следующим образом:

ближнее ультрафиолетовое (200 £ l £ 400 нм)

видимое (400 £ l £ 750 нм)

ближнее инфракрасное излучение (750 £ l £ 1000 нм)

При поглощении кванта света с l = 200–1000 нм возбуждаются внешние электроны молекулы, осуществляющие химическую связь; их возбуждение может приводить к химическому превращению. Этот спектральный диапазон является основным для спектроскопии поглощения и испускания света.


Спектр поглощения вещества обычно состоит из полос разной интенсивности и ширины. Происхождение этих полос можно проиллюстрировать с помощью энергетической диаграммы молекулярных орбиталей (МО). Электроны в молекуле в основном состоянии располагаются парами на МО с разной энергией. Длинноволновая полоса в электронном спектре поглощения обычно соответствует переходу электрона с верхней занятой МО (ВЗМО) на нижнюю вакантную МО (НВМО). Полосы поглощения с большей энергией соответствуют переходам на вышележащие вакантные МО (например, S0®S2) или переходам с нижележащих занятых МО (например, S–1®S1).

   
Полосы в спектрах поглощения нередко имеют определенную структуру. Это связано с тем, что каждому электронному состоянию соответствует набор разных колебательных состояний. На рисунке показана зависимость потенциальной энергии двухатомной молекулы в основном электронном состоянии от межъядерного расстояния (кривая S0). Максимумы на кривых для колебательных состояний (n = 0, 1, 2, 3, 4) отвечают наиболее вероятным межъядерным расстояниям. Для нулевого колебательного состояния n = 0 наиболее вероятное межъядерное расстояние находится в области минимума кривой потенциальной энергии. Для более высоких колебательных уровней наиболее вероятные межъядерные расстояния находятся вблизи точки поворота колебания.  
Принцип Франка-Кондона Для объяснения относительной интенсивности переходов между колебательными уровнями основного и возбужденного электронных состояний используют принцип Франка-Кондона. Этот принцип основан на том, что электронный переход является намного более быстрым процессом (~10-15 с), чем движение ядер в молекуле (~10-13 с), то есть за время электронного перехода взаимное расположение ядер и их импульсы практически не изменяются. Поэтому электронно-колебательные переходы можно представить вертикальными линиями, соединяющими поверхности потенциальной энергии основного S0 и возбужденного S1 электронных состояний. Большинство молекул при комнатной температуре находится на нулевом колебательном уровне, поэтому фотоиндуцированные электронные переходы происходят именно с этого уровня. При данном расположении потенциальных кривых S0 и S1 наиболее вероятным электронно-колебательным переходом будет (0-2)-переход. Интенсивность (0-0)-перехода сравнительно мала, поскольку этому переходу соответствует маловероятное межъядерное расстояние.  
     

В многоатомной молекуле кривая потенциальной энергии переходит в многомерную поверхность, поэтому одному электронному переходу соответствует множество колебательных переходов. Часто эти колебательные переходы близки по энергии и им соответствует одна общая широкая полоса поглощения. Форма этой полосы, тем не менее, определяется принципом Франка-Кондона.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: