Мультиплетность

Стоксов сдвиг

Процессы релаксации в электронно-возбужденных состояниях.

В жидких растворах при комнатной температуре электронно-возбужденные состояния молекул подвергаются сравнительно быстрым процессам релаксации электронно-колебательной энергии. Основные процессы релаксации: внутренняя конверсия из верхних возбужденных состояний S n в нижнее возбужденное состояние S1 (< 10-12 с) и колебательная релаксация в состоянии S1, т.е. диссипация избыточной энергии колебаний в среде за счет столкновений возбужденных молекул вещества с молекулами среды (~10-11 с).

Эти процессы, как правило, происходят существенно быстрее по сравнению с процессом спонтанного испускания фотона, т.е. излучательной дезактивацией возбужденного состояния S1 (~10-9 с). Поэтому излучательный переход из состояния S1 в основное состояние S0, называемый флуоресценцией, происходит, как правило, из нулевого колебательного состояния. Таким образом, общим переходом при поглощении и испускании света является переход между нулевыми колебательными уровнями основного и возбужденного состояний, который называют (0-0)-переходом. Энергия (0-0)-перехода - наименьшая при поглощении и наибольшая при испускании. Состояния S0 и S1 обычно имеют аналогичные распределения колебательных уровней по энергиям, поэтому спектр флуоресценции, как правило, близок к зеркальному отражению спектра поглощения, если оба спектра представлены в шкале энергии фотона.  

Для сложных молекул в жидкой фазе (0-0)-переход в спектре флуоресценции имеет меньшую энергию, чем (0-0)-переход в спектре поглощения. Это связано с тем, что сразу после поглощения или испускания фотона молекула оказывается в неравновесном состоянии сольватации. В невязких растворителях при комнатной температуре переход возбужденного флуорофора в равновесное состояние сольватации происходит до испускания фотона. Поэтому (0-0)-переход при испускании света имеет меньшую частоту, чем (0-0)-переход при поглощении. Смещение полосы флуоресценции в красную область относительно длинноволновой полосы поглощения называется стоксовым сдвигом.

Мультиплетность электронного состояния равна n + 1, где n – число неспаренных электронов. Молекулярные орбитали молекул с четным числом электронов заполнены парами электронов с противоположно направленными спинами. Мультиплетность основного состояния большинства молекул с четным числом электронов равна 1, т.е. это синглетные состояния. При переходе электрона на верхнюю орбиталь его спин может оказаться ориентированным в том же или в противоположном направлении относительно оставшегося на нижней орбитали электрона. Если ориентации спина сохраняется, то мультиплетность возбужденного состояния, как и основного состояния, будет синглетным. Если же возбуждаемый электрон меняет направление спина, возбужденное состояние будет триплетным. Таким образом, одному основному состоянию соответствуют разные возбужденные состояния – синглетные и триплетные.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: