Излучение плазмы

Явление рекомбинации электрона и иона заключается в том, что свободный электрон, пролетая в поле иона, захватывается им и переходит в связанное состояние. При этом освобождается энергия, равная сумме кинетической энергии свободного электрона и его энергии связи. Например, если электрон с энергией εе захватывается протоном и в результате образуется нормальный атом водорода, то полный выигрыш энергии составит εе + 13,6 эВ (рисунок 2.12).

Рисунок 2.12 – Схематическое изображение возможных энергетических переходов при рекомбинации электрона и протона (диаграмма энергий)

Заштрихованная область на диаграмме энергий соответствует свободным электронам. Их кинетическая энергия отсчитывается от линии нулевого уровня вверх. Нормальное состояние электрона, связанного в атоме водорода, соответствует отрицательной энергии 13,6 эВ. За нулевой уровень энергии условно принимается состояние, при котором связь между ядром и электроном разорвана и эти частицы разведены на очень большое расстояние с нулевой кинетической энергией.

Освобождающаяся энергия может излучаться в виде фотона с энергией εе + 13,6 эВ. Возможен также ступенчатый переход, при котором атом сначала оказывается в одном из доступных возбужденных состояний, а затем перескакивает на нормальный уровень. Это изображено на правой стороне диаграммы. Тормозному излучению соответствует изменение энергетического состояния электрона в заштрихованной области (переход между точками А и В). Так как свободные электроны обладают непрерывным набором энергий, то фотоны, излучаемые в процессе рекомбинации, образуют сплошной спектр, на который накладывается линейчатый спектр возбужденных атомов, образующихся при ступенчатых переходах.

Для сварочных дуг, имеющих Те ≈ Ti ≤ 104 K, излучение рекомбинации преобладает над тормозным излучением электронов и имеется преимущественно сплошной спектр с максимумом длин волн излучения в видимой и ультрафиолетовой областях оптического диапазона 0,3…1,0 мкм. Спектр сварочной дуги в парах металлов приближается к спектру солнечного излучения с небольшим сдвигом в сторону длинных волн (рисунок 2.13).

Сплошной спектр интегрально дает наибольшую часть излучения дуги. Однако интенсивность отдельных линий линейчатого спектра на фоне сплошного спектра значительно выше. По частоте (длине волны) и интенсивности определенных спектральных линий, излучаемых в разных зонах дугового разряда, можно судить о концентрации возбужденных атомов и, следовательно, о температуре зоны. Сравнивая интенсивности спектральных линий, делают заключение об электронной температуре плазмы и степени приближения ее к термодинамическому равновесию. Важные сведения о плотности электронов в плазме получают, измеряя уширение спектральных линий.

Рисунок 2.13 – Сплошной спектр излучения столба дуги в сравнении

с солнечным спектром (Е. Ролласон, Е. Ван-Соммерн)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: