Сжатый воздух в металлургии

До сих пор мы рассматривали применение сжатого воздуха для совершения механической работы, получения и переработки информации.

В металлургии сжатый воздух выполняет свою самую древнюю функцию участвует в технологических процессах в качестве реагента, содержащегокислород. Главная функция сжатого воздуха в металлургии - дутье, т.е. подача сжатого воздуха в самые различные производственные агрегаты - домны, мартены, конвертеры. Дутье является необходимым фактором технологических процессов в этих агрегатах, так как без воздуха, а точнее без кислорода, нет горения.

Первый из этих процессов - обогащение руды, т.е. повышение содержания железа или другого металла и понижение содержания вредных примесей. Один из способов обогащения - флотация. Ее осуществляют в специальных ваннах, куда подают тонко измельченную руду вместе с водой - пульпу. Через эту пульпу продувают сжатый воздух. Пенная флотация основана на том, что одни минералы не смачиваются водой, прилипают к пузырькам воздуха и поднимаются, а другие минералы смачиваются водой и остаются в пульпе. В результате частицы металла всплывают на поверхность, а пустая порода оседает на дне ванны.

В пневматических флотационных машинах сжатый воздух подается по трубам под небольшим давлением. Флотацию широко используют для обогащения руд цветных металлов, где содержание основного компонента низкое. В железных рудах содержание основного компонента гораздо выше, но и их приходится обогащать. В черной металлургии флотацию применяют для обогащения марганцевых руд и железорудных концентратов, содержащих 70-72 % железа.

Следующий металлургический процесс - агломерация т.е. окомкование мелких и пылеватых руд. Для этого пылеватую руду спекают на агломерационной машине. Агломерационная машина представляет собой металлический конвейер, каждое звено которого выполнено в виде решетки. На этот конвейер из бункера подают увлажненную мелкую руду, смешанную с небольшим количеством топлива - кокса. Конвейер проходит над мощными вентиляторами, которые просасывают воздух сквозь слой смеси руды с коксом. Кокс начинает гореть, руда разогревается до высокой температуры и из мелкой превращается в прочную пористую массу - агломерат. Домна, в которой используют агломерат, дает больше чугуна, чем домна без его применения.

Железо в руде находится в форме окислов. Целью доменного процесса является освобождение железа от связанного с ним кислорода - восстановление. Загрузочный аппарат засыпает в доменную печь в определенной пропорции рудные материалы, топливо (кокс) и флюсы. Загружают отдельные виды сырья слоями, чтобы увеличить поверхность их соприкосновения, на которой происходят химические реакции.

В нижнюю часть домны, в ее горн, через специальные отверстия - фурмы вдувают горячий воздух. Кислород, содержащийся в воздухе, взаимодействует с углеродом кокса, в результате чего образуется углекислый газ СО2. Он поднимается выше, проходит через кокс, вступает с ним в реакцию, продуктом которой является окись углерода СО. Поднимаясь выше, она отнимает у окислов железа содержащихся в руде, кислород и связывает его. Освободившееся железо вступает во взаимодействие с углеродом образуется сплав - чугун.

Для подачи дутья чаще всего используют центробежные воздуходувные машины с приводом от паровой турбины. На одну тонну чугуна расходуют 2500 - 3500 м воздуха, т.е. производительность воздуходувной машины составляет до 8000 м3/мин. Такое количество холодного воздуха охлаждало бы доменную печь и увеличивало бы расход топлива, поэтому перед подачей в домну воздух предварительно нагревают до 1100 - 1300 °С в воздухонагревателях - кауперах. Их располагают рядом с доменной печью.

Кауперы представляют собой закрытые металлическим кожухом башни высотой до 50 м и диаметром до 9 м. Внутри они разделены на две части: камеру сгорания и часть, заполненную насадкой из огнеупорного материала. В камере сгорания сжигают топливо. Продукты сгорания, проходя через насадку, отдают ей свое тепло и раскаляют ее. Когда насадка нагревается до высокой температуры, подачу топлива прекращают. После этого мощными воздуходувными машинами нагнетают в воздухонагреватель холодный воздух. Проходя через раскаленную насадку, воздух нагревается, и его направляют к кольцевому воздухопроводу, опоясывающему домну - фурменному поясу. Отсюда через фурмы воздух под давлением 0,35 - 0,4 МПа равномерно вдувается в домну.

Для нагрева насадки требуется определенное время. Поэтому для бесперебойного снабжения домны горячим дутьем возле нее устанавливают несколько воздухонагревателей. Одни из них нагреваются, а другие нагревают воздух. Заметим, что в воздухе содержится 1/5 кислорода и 4/5 азота, причем азот ни в каких химических реакциях не участвует, однако на его нагрев тратится тепло. Гораздо выгоднее осуществлять дутье в доменном процессе воздухом, обогащенным кислородом, или чистым кислородом.

Применение кислородного дутья упрощает доменный процесс, позволяет уменьшить его расход на единицу топлива. Это дает возможность уменьшить размеры и мощность воздуходувных установок, воздухонагревателей и трубопроводов, высоту доменных печей.

На целесообразность обогащения дутья кислородом указывал еще Д.И. Менделеев. Однако практическая реализация кислородного дутья стала возможной лишь в 30 - 40-х годах XX в., когда были созданы достаточно мощные машины для разделения воздуха на кислород и азот в больших количествах. Заслуга создания отечественной кислородной промышленности принадлежит академику П.Л. Капице.

Не меньшую роль играет сжатый воздух при выплавке стали. Если процесс выплавки чугуна - восстановительный, то выплавка стали из чугуна и металлического лома - окислительный процесс. При выплавке стали удаляются примеси - углерод, кремний, марганец, которые окисляются. А для окисления нужен кислород.

Бессемером и Томасом был разработан быстрый и эффективный способ «варки» стали - конвертерный. Он заключается в том, что расплавленный жидкий чугун продувают сжатым воздухом, и содержащийся в нем кислород соединяется с углеродом, кремнием и марганцем.

Конвертер представляет собой стальной сосуд грушевидной формы, сужающийся кверху. Изнутри он выложен огнеупорным кирпичом. В днище конвертера имеются отверстия, через которые подают сжатый воздух под большим давлением. В конвертер заливают расплавленный чугун, а затем продувают его снизу сжатым воздухом. В результате углерод быстро выгорает, и сплав почти полностью обезуглероживается - образуется сталь. При соединении кислорода с кремнием и марганцем выделяется тепло. Это избавляет от необходимости тратить топливо в конвертерном процессе.

Д.И. Менделеев называл бессемеровские конвертеры печами без топлива. Однако конвертерный способ при использовании продувки чугуна сжатым воздухом имел и ряд недостатков. При продувке металл насыщался азотом, содержащимся в воздухе. Это повышало хрупкость стали и ее склонность к старению. Кислород воздуха не затрагивал вредные примеси - серу и фосфор. При бессемеровском способе можно было применять не всякий чугун, а только содержащий кремний и марганец, которые при окислении выделяют большое количество тепла. Поэтому железный лом конвертерным способом перерабатывать было нельзя, а можно было использовать только жидкий чугун. Гораздо рациональнее использовать для продувки в конвертерном процессе не сжатый воздух, а чистый кислород. Однако во времена Бессемера его еще не научились получать из воздуха в больших количествах.

По всем этим причинам конвертерный способ выплавки стали надолго уступил место мартеновскому способу, который позволяет перерабатывать не только чугун, но и железный лом.

Топливом для мартеновской печи служит мазут или смесь коксового газа, получаемого в коксовых батареях, и доменно-колосникового газа. И эта смесь, и воздух перед подачей в мартен нагреваются в регенераторах. Отличие регенератора от воздухонагревателя доменной печи заключается в том, что для нагрева воздуха в воздухонагревателе сжигается топливо, а в регенераторе используется тепло, выносимое из мартеновской печи раскаленными продуктами сгорания топлива, т.е. осуществляется регенерация тепла.

Регенератор представляет собой большую камеру, выполненную из огнеупорного материала и заполненную ячейками из огнеупорного кирпича - насадкой. У каждой мартеновской печи две пары регенераторов для нагрева газа и воздуха. Пока одна нагретая пара отдает тепло холодным газу и воздуху и постепенно остывает, насадка другой пары регенераторов, через которые пропускаются уходящие из мартеновской печи продукты сгорания, нагре­вается ими. Когда насадка нагревается до определенной температуры, происходит автоматическое переключение направления потоков газа и воздуха. Нагретые регенераторы начинают работать - отдавать тепло газу и воздуху, а остывшие останавливают на нагрев. Эти переключения производят через ка­ждые 15 - 20 мин. Топливо подается в мартеновскую печь всегда с избытком воздуха, по­этому в ней всегда имеется окислительная среда. Уже в процессе загрузки чугуна и лома начинается окисление примесей.

Производительность мартенов составляет 100 т стали в час. Применение обогащенного кислородом воздуха и чистого кислорода интенсифицирует процесс выплавки стали в мартеновских печах так же, как и выплавки чугуна в домнах.

Однако прирост производства стали во всех странах в наше время происходит за счет строительства не мартеновских цехов, а кислородно-конвертерных. Кислородный конвертер устроен так же, как и бессемеровский. Отличие его от бессемеровского в том, что дно у него цельносварное, а кислород подается не снизу, а сверху, под высоким давлением (0,9 - 1,4 МПа). Корпус и днище кислородного конвертера облицованы огнеупорными материалами. Струя подаваемого кислорода внедряется в жидкий металл и вступает в реакцию с примесями чугуна. В течение первых 5-10 мин окисляются кремний и марганец. В результате реакции окисления выделяется тепло, и температура металла в конвертере поднимается до 1400 - 1450 °С После этого происходит быстрое окисление углерода - он выгорает. Кислород продолжают вдувать до тех пор, пока содержание углерода не снизится до 2%. При этом металл разогревается до 1600 °С Реакции окисления, прохо­дящие в конвертере, дают столько тепла, что его становится достаточно не только для нагрева жидкого чугуна, но и для расплавления железного лома.

Кислородно-конвертерный способ по сравнению с мартеновским и электросталеплавильным имеет более высокую производительность - до 400 - 500 т в час. К тому же он свободен от недостатков бессемеровского процесса и годится для любых видов чугуна и железного лома.

Конвертерный способ применяется не только при выплавке стали, но и при выплавке меди в цветной металлургии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: