Интерфейсы и память

Архитектура видеоадаптера

Необходимость в создании отдельного контроллера, обеспечивающего вывод изображения, была вызвана тем, что использовавшиеся в первых ПК мониторы были построены по ЭЛТ-технологии. Для управления электронно-лучевой трубкой необходим аналоговый сигнал. Преобразование цифровой информации об изображении в аналоговый управляющий сигнал и стало первой задачей графических адаптеров. Любой, в том числе и современный, графический адаптер содержит три цифроаналоговых преобразователя-ЦАП-(по одному на каждый из основных цветов) и память — так называемый кадровый буфер. Информация о каждой точке экрана считывается последовательно из кадрового буфера и превращается в аналоговый сигнал цифроаналоговым преобразователем. Модуль, состоящий из кадрового буфера (RAM) и трех ЦАП (DAC) носит название RAMDAC. Для построения изображения с разрешением 1600*1200 при частоте обновления экрана 75 Гц необходимо 144 млн. обращений к кадровому буферу в секунду, т. е. RAMDAC должен работать на частоте 144 МГц. Современные графические адаптеры оснащаются 400 МГц RAMDAC, которые обеспечивают получение изображения с гораздо большим разрешением. Что касается цветопередачи, то для формирования изображения с 16 млн. цветов необходимо использовать 24 бит информации на точку — 8 бит на каждый цветовой канал. Используемые в настоящее время RAMDAC оборудованы, как правило, 10 разрядными ЦАП. Необходимо отметить, что современные графические микросхемы оснащаются, как правило, сразу двумя RAMDAC, что позволяет вывести изображение одновременно на два монитора.

Объем информации, обрабатываемый RAMDAC, достаточно велик — легко посчитать, что для разрешения 1600*1200 при частоте 75 Гц и 24_бит цвете необходимо обработать 432 Мбайт за каждую секунду. Первые графические адаптеры имели интерфейс PCI и делили ресурсы этой шины с другими PCI-устройствами. Поэтому особенно важен объем памяти графического адаптера: поместив в видеопамять информацию, полностью описывающую кадр, можно было освободить шину на время его обработки. Однако учитывая, что даже при разрешении 1024*768, частоте 60 Гц и 16_бит цвете графическому контроллеру требовалось более двух третей общей пропускной способности (около 95 из 133 Мбайт/с, обеспечиваемых 32-разрядной шиной PCI), даже самое экономное использование ресурсов шины не спасало положения.

Решением стало применение интерфейса AGP (Accelerated Graphics Port), представляющего собой выделенный канал, соединяющий только два устройства — графический контроллер и системное ОЗУ.

С появлением графических ускорителей первого и второго поколения требования к быстродействию интерфейса и объему памяти значительно возросли. Объем информации о 3D-сцене, передаваемой ускорителю с блоком T&L, составляет десятки мегабайт. Более того, в процессе обработки этой информации контроллер получает множество промежуточных данных, которые также хранит в видеопамяти. Поэтому современные графические адаптеры очень требовательны к быстродействию подсистемы памяти и объему видеоОЗУ. Как правило, платы с самыми высокопроизводительными микросхемами оснащаются 128/256-Мбайт видеоОЗУ. Новейшие графические процессоры имеют четырехканальные контроллеры памяти со 128- и даже 256-разрядной шиной и совместимы с памятью DDR второго, а самые современные — и третьего поколения.

Используемая в настоящее время третья модификация интерфейса AGP обеспечивает пропускную способность 2,1 Гбайт/с, что вполне достаточно даже для самых мощных графических ускорителей, однако, уже началась замена на последовательную шина PCI Express.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: